通过网络欺骗的移动众测系统抵御恶意攻击的弹性

Prithwiraj Roy, Shameek Bhattacharjee, H. Alsheakh, Sajal K. Das
{"title":"通过网络欺骗的移动众测系统抵御恶意攻击的弹性","authors":"Prithwiraj Roy, Shameek Bhattacharjee, H. Alsheakh, Sajal K. Das","doi":"10.1109/WoWMoM51794.2021.00030","DOIUrl":null,"url":null,"abstract":"Mobile Crowdsensing System (MCS) applications deploy rating feedback mechanisms to help quantify the trustworthiness of published events which over time improve decision accuracy and establish user reputation. In this paper, we first show that factors such as sparseness, inherent error probabilities of rating feedback labelers, and prior knowledge of the event trust scoring models, can be used by strategic adversaries to hijack the feedback labeling mechanism itself with bad mouthing attacks. Then, we propose a randomized rating sub-sampling technique inspired from moving target defense and cyber deception to mitigate the degradation in the resulting event trust scores of truthful events. We offer a game theoretic strategy under various knowledge levels of an adversary and the MCS in regards to picking an optimal sub-sample size for bad mouthing attacks and event trust calculations respectively, by using a vehicular crowdsensing as a proof-of-concept.","PeriodicalId":131571,"journal":{"name":"2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resilience Against Bad Mouthing Attacks in Mobile Crowdsensing Systems via Cyber Deception\",\"authors\":\"Prithwiraj Roy, Shameek Bhattacharjee, H. Alsheakh, Sajal K. Das\",\"doi\":\"10.1109/WoWMoM51794.2021.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Crowdsensing System (MCS) applications deploy rating feedback mechanisms to help quantify the trustworthiness of published events which over time improve decision accuracy and establish user reputation. In this paper, we first show that factors such as sparseness, inherent error probabilities of rating feedback labelers, and prior knowledge of the event trust scoring models, can be used by strategic adversaries to hijack the feedback labeling mechanism itself with bad mouthing attacks. Then, we propose a randomized rating sub-sampling technique inspired from moving target defense and cyber deception to mitigate the degradation in the resulting event trust scores of truthful events. We offer a game theoretic strategy under various knowledge levels of an adversary and the MCS in regards to picking an optimal sub-sample size for bad mouthing attacks and event trust calculations respectively, by using a vehicular crowdsensing as a proof-of-concept.\",\"PeriodicalId\":131571,\"journal\":{\"name\":\"2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM51794.2021.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM51794.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

移动众感系统(MCS)应用程序部署评级反馈机制,以帮助量化已发布事件的可信度,从而随着时间的推移提高决策准确性并建立用户声誉。在本文中,我们首先证明了诸如稀疏性、评级反馈标注器的固有错误概率以及事件信任评分模型的先验知识等因素可以被战略对手利用恶意攻击来劫持反馈标注机制本身。然后,我们提出了一种受移动目标防御和网络欺骗启发的随机评级子抽样技术,以减轻真实事件的事件信任分数的下降。我们提供了一种博弈论策略,在对手和MCS的不同知识水平下,分别为恶意攻击和事件信任计算选择最佳子样本大小,通过使用车辆人群感知作为概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilience Against Bad Mouthing Attacks in Mobile Crowdsensing Systems via Cyber Deception
Mobile Crowdsensing System (MCS) applications deploy rating feedback mechanisms to help quantify the trustworthiness of published events which over time improve decision accuracy and establish user reputation. In this paper, we first show that factors such as sparseness, inherent error probabilities of rating feedback labelers, and prior knowledge of the event trust scoring models, can be used by strategic adversaries to hijack the feedback labeling mechanism itself with bad mouthing attacks. Then, we propose a randomized rating sub-sampling technique inspired from moving target defense and cyber deception to mitigate the degradation in the resulting event trust scores of truthful events. We offer a game theoretic strategy under various knowledge levels of an adversary and the MCS in regards to picking an optimal sub-sample size for bad mouthing attacks and event trust calculations respectively, by using a vehicular crowdsensing as a proof-of-concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信