多元偏态混合模型:荧光活化细胞分选数据的应用

Kui Wang, S. Ng, G. McLachlan
{"title":"多元偏态混合模型:荧光活化细胞分选数据的应用","authors":"Kui Wang, S. Ng, G. McLachlan","doi":"10.1109/DICTA.2009.88","DOIUrl":null,"url":null,"abstract":"In many applied problems in the context of pattern recognition, the data often involve highly asymmetric observations. Normal mixture models tend to overfit when additional components are included to capture the skewness of the data. Increased number of pseudo-components could lead to difficulties and inefficiencies in computations. Also, the contours of the fitted mixture components may be distorted. In this paper, we propose to adopt mixtures of multivariate skew t distributions to handle highly asymmetric data. The EM algorithm is used to compute the maximum likelihood estimates of model parameters. The method is illustrated using a flurorescence-activated cell sorting data.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Multivariate Skew t Mixture Models: Applications to Fluorescence-Activated Cell Sorting Data\",\"authors\":\"Kui Wang, S. Ng, G. McLachlan\",\"doi\":\"10.1109/DICTA.2009.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applied problems in the context of pattern recognition, the data often involve highly asymmetric observations. Normal mixture models tend to overfit when additional components are included to capture the skewness of the data. Increased number of pseudo-components could lead to difficulties and inefficiencies in computations. Also, the contours of the fitted mixture components may be distorted. In this paper, we propose to adopt mixtures of multivariate skew t distributions to handle highly asymmetric data. The EM algorithm is used to compute the maximum likelihood estimates of model parameters. The method is illustrated using a flurorescence-activated cell sorting data.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

在模式识别的许多应用问题中,数据通常涉及高度不对称的观测值。当加入额外的分量来捕捉数据的偏度时,正常混合模型倾向于过拟合。伪组件数量的增加可能导致计算困难和效率低下。此外,所拟合的混合部件的轮廓可能会失真。在本文中,我们建议采用多元偏态t分布的混合来处理高度不对称的数据。EM算法用于计算模型参数的最大似然估计。该方法是用荧光激活细胞分选数据说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Skew t Mixture Models: Applications to Fluorescence-Activated Cell Sorting Data
In many applied problems in the context of pattern recognition, the data often involve highly asymmetric observations. Normal mixture models tend to overfit when additional components are included to capture the skewness of the data. Increased number of pseudo-components could lead to difficulties and inefficiencies in computations. Also, the contours of the fitted mixture components may be distorted. In this paper, we propose to adopt mixtures of multivariate skew t distributions to handle highly asymmetric data. The EM algorithm is used to compute the maximum likelihood estimates of model parameters. The method is illustrated using a flurorescence-activated cell sorting data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信