同时发生的一对正反化学反应的Koopman算子和扩展动态模态分解

J. Leventides, E. Melas, C. Poulios
{"title":"同时发生的一对正反化学反应的Koopman算子和扩展动态模态分解","authors":"J. Leventides, E. Melas, C. Poulios","doi":"10.1109/IAI55780.2022.9976748","DOIUrl":null,"url":null,"abstract":"We apply the Koopman operator theory and Extended Dynamic Mode Decomposition in a pair of forward and reverse chemical reactions which occur simultaneously with comparable speeds. The system of ODES which governs the evolution of the concentration of the reactants constitutes a nonlinear dynamical system with an interesting feature: It possesses uncountable infinite equilibria which reside on an algebraic surface. Koopman operator captures the dynamics of a nonlinear system, however it is infinite dimensional. In this study, we approximate the chemical reaction dynamics with a data-driven finite dimensional linear system which is defined on some augmented state space. We approximate so, with given initial conditions, the trajectories of the system and obtain an alternative description of the system based on Koopman operator theory, Extended Dynamic Mode Decomposition, and Machine Learning.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Koopman operators and Extended Dynamic Mode Decomposition for a pair of forward and reverse chemical reactions which occur simultaneously\",\"authors\":\"J. Leventides, E. Melas, C. Poulios\",\"doi\":\"10.1109/IAI55780.2022.9976748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the Koopman operator theory and Extended Dynamic Mode Decomposition in a pair of forward and reverse chemical reactions which occur simultaneously with comparable speeds. The system of ODES which governs the evolution of the concentration of the reactants constitutes a nonlinear dynamical system with an interesting feature: It possesses uncountable infinite equilibria which reside on an algebraic surface. Koopman operator captures the dynamics of a nonlinear system, however it is infinite dimensional. In this study, we approximate the chemical reaction dynamics with a data-driven finite dimensional linear system which is defined on some augmented state space. We approximate so, with given initial conditions, the trajectories of the system and obtain an alternative description of the system based on Koopman operator theory, Extended Dynamic Mode Decomposition, and Machine Learning.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将Koopman算子理论和扩展动态模态分解应用于一对同时发生且速度相当的正反化学反应。控制反应物浓度演化的ODES系统构成了一个非线性动力系统,它具有一个有趣的特征:它具有存在于代数表面上的无数无限平衡。库普曼算子捕捉了非线性系统的动力学,但它是无限维的。在本研究中,我们用数据驱动的有限维线性系统来近似化学反应动力学,该系统被定义在一些增广的状态空间上。在给定初始条件下,我们近似了系统的轨迹,并基于Koopman算子理论、扩展动态模态分解和机器学习获得了系统的另一种描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Koopman operators and Extended Dynamic Mode Decomposition for a pair of forward and reverse chemical reactions which occur simultaneously
We apply the Koopman operator theory and Extended Dynamic Mode Decomposition in a pair of forward and reverse chemical reactions which occur simultaneously with comparable speeds. The system of ODES which governs the evolution of the concentration of the reactants constitutes a nonlinear dynamical system with an interesting feature: It possesses uncountable infinite equilibria which reside on an algebraic surface. Koopman operator captures the dynamics of a nonlinear system, however it is infinite dimensional. In this study, we approximate the chemical reaction dynamics with a data-driven finite dimensional linear system which is defined on some augmented state space. We approximate so, with given initial conditions, the trajectories of the system and obtain an alternative description of the system based on Koopman operator theory, Extended Dynamic Mode Decomposition, and Machine Learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信