使用6.7 GHz有源栅极驱动器在650v GaN场效应管桥腿中塑造开关波形

Jeremy J. O. Dalton, Jianjing Wang, H. Dymond, Dawei Liu, D. Pamunuwa, B. Stark, N. McNeill, S. Hollis
{"title":"使用6.7 GHz有源栅极驱动器在650v GaN场效应管桥腿中塑造开关波形","authors":"Jeremy J. O. Dalton, Jianjing Wang, H. Dymond, Dawei Liu, D. Pamunuwa, B. Stark, N. McNeill, S. Hollis","doi":"10.1109/APEC.2017.7930970","DOIUrl":null,"url":null,"abstract":"The application of active gate driving to 40 V GaN FETs has previously been shown to reduce ringing and EMI-generating spectral content in the switch-node voltage waveforms. This paper, for the first time, shows active gate driving applied to 650 V GaN FETs, and the shaping of device voltages and currents during switching transients. A custom integrated active gate driver is used, which can dynamically vary its output resistance from 0.12 to 64 Ω, with a 150 ps timing resolution. At 200 V DC link and 10 A load current, a significant degree of control over the active-switch drain current and switch-node voltage is demonstrated, for both buck and boost mode operation. The current overshoot and ringing in the power waveforms due to circuit parasitics are actively reduced and the voltage oscillations in the DC link are damped. The timing of resistance sequences is shown to be critical to the success of active shaping methods, thus justifying the unparalleled 150 ps resolution of the driver. Under continuous operation and at reduced ratings of 100 V and 2 A load current the significant control of the switch node voltage and voltage spectra is also demonstrated. The switching delay is reduced, and parts of the spectrum are reduced by up to 9 dB, equivalent to the effect of tripling the gate resistance but without any reduction in the overall switching speed.","PeriodicalId":201289,"journal":{"name":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Shaping switching waveforms in a 650 V GaN FET bridge-leg using 6.7 GHz active gate drivers\",\"authors\":\"Jeremy J. O. Dalton, Jianjing Wang, H. Dymond, Dawei Liu, D. Pamunuwa, B. Stark, N. McNeill, S. Hollis\",\"doi\":\"10.1109/APEC.2017.7930970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of active gate driving to 40 V GaN FETs has previously been shown to reduce ringing and EMI-generating spectral content in the switch-node voltage waveforms. This paper, for the first time, shows active gate driving applied to 650 V GaN FETs, and the shaping of device voltages and currents during switching transients. A custom integrated active gate driver is used, which can dynamically vary its output resistance from 0.12 to 64 Ω, with a 150 ps timing resolution. At 200 V DC link and 10 A load current, a significant degree of control over the active-switch drain current and switch-node voltage is demonstrated, for both buck and boost mode operation. The current overshoot and ringing in the power waveforms due to circuit parasitics are actively reduced and the voltage oscillations in the DC link are damped. The timing of resistance sequences is shown to be critical to the success of active shaping methods, thus justifying the unparalleled 150 ps resolution of the driver. Under continuous operation and at reduced ratings of 100 V and 2 A load current the significant control of the switch node voltage and voltage spectra is also demonstrated. The switching delay is reduced, and parts of the spectrum are reduced by up to 9 dB, equivalent to the effect of tripling the gate resistance but without any reduction in the overall switching speed.\",\"PeriodicalId\":201289,\"journal\":{\"name\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2017.7930970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2017.7930970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在40 V GaN场效应管中应用有源栅极驱动已经被证明可以减少开关节点电压波形中的振铃和产生emi的频谱含量。本文首次展示了应用于650 V GaN场效应管的有源栅极驱动,以及开关瞬态时器件电压和电流的整形。使用自定义集成有源栅极驱动器,可以动态改变其输出电阻从0.12到64 Ω,具有150 ps的时序分辨率。在200v直流链路和10a负载电流下,对于降压和升压模式操作,对主动开关漏极电流和开关节点电压的显著程度的控制被证明。主动减小了电路寄生引起的功率波形中的电流超调和振铃现象,抑制了直流链路中的电压振荡。电阻序列的时序对主动整形方法的成功至关重要,因此证明了驱动器无与伦比的150 ps分辨率是合理的。在连续工作和降低额定100 V和2a负载电流下,还证明了开关节点电压和电压谱的重要控制。开关延迟降低,部分频谱减少高达9db,相当于栅极电阻增加三倍的效果,但总体开关速度没有任何降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shaping switching waveforms in a 650 V GaN FET bridge-leg using 6.7 GHz active gate drivers
The application of active gate driving to 40 V GaN FETs has previously been shown to reduce ringing and EMI-generating spectral content in the switch-node voltage waveforms. This paper, for the first time, shows active gate driving applied to 650 V GaN FETs, and the shaping of device voltages and currents during switching transients. A custom integrated active gate driver is used, which can dynamically vary its output resistance from 0.12 to 64 Ω, with a 150 ps timing resolution. At 200 V DC link and 10 A load current, a significant degree of control over the active-switch drain current and switch-node voltage is demonstrated, for both buck and boost mode operation. The current overshoot and ringing in the power waveforms due to circuit parasitics are actively reduced and the voltage oscillations in the DC link are damped. The timing of resistance sequences is shown to be critical to the success of active shaping methods, thus justifying the unparalleled 150 ps resolution of the driver. Under continuous operation and at reduced ratings of 100 V and 2 A load current the significant control of the switch node voltage and voltage spectra is also demonstrated. The switching delay is reduced, and parts of the spectrum are reduced by up to 9 dB, equivalent to the effect of tripling the gate resistance but without any reduction in the overall switching speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信