{"title":"基于因子分解机和主题建模的工作推荐","authors":"V. Leksin, A. Ostapets","doi":"10.1145/2987538.2987542","DOIUrl":null,"url":null,"abstract":"This paper describes our solution for the RecSys Challenge 2016. In the challenge, several datasets were provided from a social network for business XING. The goal of the competition was to use these data to predict job postings that a user will interact positively with (click, bookmark or reply). Our solution to this problem includes three different types of models: Factorization Machine, item-based collaborative filtering, and content-based topic model on tags. Thus, we combined collaborative and content-based approaches in our solution. Our best submission, which was a blend of ten models, achieved 7th place in the challenge's final leader-board with a score of 1677 898.52. The approaches presented in this paper are general and scalable. Therefore they can be applied to another problem of this type.","PeriodicalId":127880,"journal":{"name":"RecSys Challenge '16","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Job recommendation based on factorization machine and topic modelling\",\"authors\":\"V. Leksin, A. Ostapets\",\"doi\":\"10.1145/2987538.2987542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our solution for the RecSys Challenge 2016. In the challenge, several datasets were provided from a social network for business XING. The goal of the competition was to use these data to predict job postings that a user will interact positively with (click, bookmark or reply). Our solution to this problem includes three different types of models: Factorization Machine, item-based collaborative filtering, and content-based topic model on tags. Thus, we combined collaborative and content-based approaches in our solution. Our best submission, which was a blend of ten models, achieved 7th place in the challenge's final leader-board with a score of 1677 898.52. The approaches presented in this paper are general and scalable. Therefore they can be applied to another problem of this type.\",\"PeriodicalId\":127880,\"journal\":{\"name\":\"RecSys Challenge '16\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RecSys Challenge '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2987538.2987542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RecSys Challenge '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987538.2987542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Job recommendation based on factorization machine and topic modelling
This paper describes our solution for the RecSys Challenge 2016. In the challenge, several datasets were provided from a social network for business XING. The goal of the competition was to use these data to predict job postings that a user will interact positively with (click, bookmark or reply). Our solution to this problem includes three different types of models: Factorization Machine, item-based collaborative filtering, and content-based topic model on tags. Thus, we combined collaborative and content-based approaches in our solution. Our best submission, which was a blend of ten models, achieved 7th place in the challenge's final leader-board with a score of 1677 898.52. The approaches presented in this paper are general and scalable. Therefore they can be applied to another problem of this type.