面向目标的意见词提取与情感分类联合模型

Chenyang Dai, Bo Shen, Fengxiao Yan
{"title":"面向目标的意见词提取与情感分类联合模型","authors":"Chenyang Dai, Bo Shen, Fengxiao Yan","doi":"10.1142/s0219649222500976","DOIUrl":null,"url":null,"abstract":"Target-oriented opinion word extraction and aspect-level sentiment classification are two highly relevant tasks in aspect-based sentiment analysis. Previous studies tend to separate them and focus on one of the tasks, which ignore the connection between opinion word extraction and sentiment classification, and result in the waste of useful connection information. In this paper, we propose a co-extraction model, in which the two tasks are formulated as a sequence labeling problem. The model involves two stacked Bi-LSTM modules and an information interaction component to generate all opinion-polarity pairs of the input sentences simultaneously. The experimental results show that our model achieves advanced results in target opinion word-polarity co-extraction. The performance of both tasks is stronger than the baseline, and the model is of low complexity and high operational efficiency.","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Joint Model for Target-Oriented Opinion Words Extraction and Sentiment Classification\",\"authors\":\"Chenyang Dai, Bo Shen, Fengxiao Yan\",\"doi\":\"10.1142/s0219649222500976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target-oriented opinion word extraction and aspect-level sentiment classification are two highly relevant tasks in aspect-based sentiment analysis. Previous studies tend to separate them and focus on one of the tasks, which ignore the connection between opinion word extraction and sentiment classification, and result in the waste of useful connection information. In this paper, we propose a co-extraction model, in which the two tasks are formulated as a sequence labeling problem. The model involves two stacked Bi-LSTM modules and an information interaction component to generate all opinion-polarity pairs of the input sentences simultaneously. The experimental results show that our model achieves advanced results in target opinion word-polarity co-extraction. The performance of both tasks is stronger than the baseline, and the model is of low complexity and high operational efficiency.\",\"PeriodicalId\":127309,\"journal\":{\"name\":\"J. Inf. Knowl. Manag.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Knowl. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219649222500976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222500976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面向目标的意见词提取和面向方面的情感分类是面向方面的情感分析中两个高度相关的任务。以往的研究往往将两者分开,只关注其中一个任务,忽略了意见词提取与情感分类之间的联系,导致有用的联系信息被浪费。在本文中,我们提出了一个共同抽取模型,其中这两个任务被表述为一个序列标记问题。该模型包括两个堆叠的Bi-LSTM模块和一个信息交互组件,用于同时生成输入句子的所有意见极性对。实验结果表明,该模型在目标意见词极性共提取方面取得了较好的效果。两种任务的性能都强于基线,且模型复杂度低,运行效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Joint Model for Target-Oriented Opinion Words Extraction and Sentiment Classification
Target-oriented opinion word extraction and aspect-level sentiment classification are two highly relevant tasks in aspect-based sentiment analysis. Previous studies tend to separate them and focus on one of the tasks, which ignore the connection between opinion word extraction and sentiment classification, and result in the waste of useful connection information. In this paper, we propose a co-extraction model, in which the two tasks are formulated as a sequence labeling problem. The model involves two stacked Bi-LSTM modules and an information interaction component to generate all opinion-polarity pairs of the input sentences simultaneously. The experimental results show that our model achieves advanced results in target opinion word-polarity co-extraction. The performance of both tasks is stronger than the baseline, and the model is of low complexity and high operational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信