基于神经信号滤波的机器人假肢心理控制

A. Brockwell
{"title":"基于神经信号滤波的机器人假肢心理控制","authors":"A. Brockwell","doi":"10.1109/NSSPW.2006.4378827","DOIUrl":null,"url":null,"abstract":"We discuss the problem of \"decoding\" intended hand motion from direct measurement of neurons in the motor cortex, for the purpose of driving a prosthetic device. By building probabilistic models and making use of nonlinear non-Gaussian filtering techniques, we are able to obtain estimates of intended hand motion, along with associated standard errors. We use a refinement of a previous state-of-the-art model, and demonstrate how the filtering approach works in analysis of multi-neuron recordings collected from a monkey carrying out a \"center-out\" task.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filtering of Neural Signals for Mental Control of Robotic Prosthetic Devices\",\"authors\":\"A. Brockwell\",\"doi\":\"10.1109/NSSPW.2006.4378827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the problem of \\\"decoding\\\" intended hand motion from direct measurement of neurons in the motor cortex, for the purpose of driving a prosthetic device. By building probabilistic models and making use of nonlinear non-Gaussian filtering techniques, we are able to obtain estimates of intended hand motion, along with associated standard errors. We use a refinement of a previous state-of-the-art model, and demonstrate how the filtering approach works in analysis of multi-neuron recordings collected from a monkey carrying out a \\\"center-out\\\" task.\",\"PeriodicalId\":388611,\"journal\":{\"name\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSPW.2006.4378827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了“解码”的问题,从直接测量神经元在运动皮层的意图手运动,以驱动假肢装置的目的。通过建立概率模型和使用非线性非高斯滤波技术,我们能够获得预期手部运动的估计,以及相关的标准误差。我们使用了先前最先进的模型的改进,并演示了过滤方法如何在分析从执行“中心-输出”任务的猴子收集的多神经元记录中起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filtering of Neural Signals for Mental Control of Robotic Prosthetic Devices
We discuss the problem of "decoding" intended hand motion from direct measurement of neurons in the motor cortex, for the purpose of driving a prosthetic device. By building probabilistic models and making use of nonlinear non-Gaussian filtering techniques, we are able to obtain estimates of intended hand motion, along with associated standard errors. We use a refinement of a previous state-of-the-art model, and demonstrate how the filtering approach works in analysis of multi-neuron recordings collected from a monkey carrying out a "center-out" task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信