从未标记的视频估计心率

John Gideon, Simon Stent
{"title":"从未标记的视频估计心率","authors":"John Gideon, Simon Stent","doi":"10.1109/ICCVW54120.2021.00307","DOIUrl":null,"url":null,"abstract":"We describe our entry for the ICCV 2021 Vision4Vitals Workshop [6] heart rate challenge, in which the goal is to estimate the heart rate of human subjects from facial video. While the challenge dataset contains extensive training data with ground truth blood pressure and heart rate signals, and therefore affords supervised learning, we pursue a different approach. We disregard the available ground truth blood pressure data entirely and instead seek to learn the photoplethysomgraphy (PPG) signal visible in subjects’ faces via a self-supervised contrastive learning technique. Since this approach does not require ground truth data, and since the challenge competition rules allow it, we therefore can train directly on test set videos. To boost performance further, we learn a supervised heart rate estimator on top of our \"dis-covered\" PPG signal, which more explicitly tries to match the ground truth heart rate. Our final approach ranked first on the competition test set, achieving a mean absolute error of 9.22 beats per minute.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Estimating Heart Rate from Unlabelled Video\",\"authors\":\"John Gideon, Simon Stent\",\"doi\":\"10.1109/ICCVW54120.2021.00307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our entry for the ICCV 2021 Vision4Vitals Workshop [6] heart rate challenge, in which the goal is to estimate the heart rate of human subjects from facial video. While the challenge dataset contains extensive training data with ground truth blood pressure and heart rate signals, and therefore affords supervised learning, we pursue a different approach. We disregard the available ground truth blood pressure data entirely and instead seek to learn the photoplethysomgraphy (PPG) signal visible in subjects’ faces via a self-supervised contrastive learning technique. Since this approach does not require ground truth data, and since the challenge competition rules allow it, we therefore can train directly on test set videos. To boost performance further, we learn a supervised heart rate estimator on top of our \\\"dis-covered\\\" PPG signal, which more explicitly tries to match the ground truth heart rate. Our final approach ranked first on the competition test set, achieving a mean absolute error of 9.22 beats per minute.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们描述了我们参加ICCV 2021 vision4vital Workshop[6]心率挑战的参赛作品,其目标是从面部视频中估计人类受试者的心率。虽然挑战数据集包含大量具有真实血压和心率信号的训练数据,因此提供了监督学习,但我们采用了不同的方法。我们完全无视现有的地面真实血压数据,而是试图通过自我监督对比学习技术来学习受试者面部可见的光电胸腺图(PPG)信号。由于这种方法不需要地面真实数据,并且由于挑战赛规则允许,因此我们可以直接在测试集视频上进行训练。为了进一步提高性能,我们在“发现的”PPG信号的基础上学习一个有监督的心率估计器,它更明确地试图匹配真实的心率。我们的最终方法在比赛测试集中排名第一,平均绝对误差为每分钟9.22次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Heart Rate from Unlabelled Video
We describe our entry for the ICCV 2021 Vision4Vitals Workshop [6] heart rate challenge, in which the goal is to estimate the heart rate of human subjects from facial video. While the challenge dataset contains extensive training data with ground truth blood pressure and heart rate signals, and therefore affords supervised learning, we pursue a different approach. We disregard the available ground truth blood pressure data entirely and instead seek to learn the photoplethysomgraphy (PPG) signal visible in subjects’ faces via a self-supervised contrastive learning technique. Since this approach does not require ground truth data, and since the challenge competition rules allow it, we therefore can train directly on test set videos. To boost performance further, we learn a supervised heart rate estimator on top of our "dis-covered" PPG signal, which more explicitly tries to match the ground truth heart rate. Our final approach ranked first on the competition test set, achieving a mean absolute error of 9.22 beats per minute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信