SIMD的高级变换和低级计算机视觉算法

WPMVP '14 Pub Date : 2014-02-16 DOI:10.1145/2568058.2568067
L. Lacassagne, D. Etiemble, A. Zahraee, A. Dominguez, P. Vezolle
{"title":"SIMD的高级变换和低级计算机视觉算法","authors":"L. Lacassagne, D. Etiemble, A. Zahraee, A. Dominguez, P. Vezolle","doi":"10.1145/2568058.2568067","DOIUrl":null,"url":null,"abstract":"This paper presents a review of algorithmic transforms called High Level Transforms for IBM, Intel and ARM SIMD multicore processors to accelerate the implementation of low level image processing algorithms. We show that these optimizations provide a significant acceleration. A first evaluation of 512-bit SIMD Xeon- Phi is also presented. We focus on the point that the combination of optimizations leading to the best execution time cannot be predicted, and thus, systematic benchmarking is mandatory. Once the best configuration is found for each architecture, a comparison of these performances is presented. The Harris points detection operator is selected as being representative of low level image processing and computer vision algorithms. Being composed of five convolutions, it is more complex than a simple filter and enables more opportunities to combine optimizations. The presented work can scale across a wide range of codes using 2D stencils and convolutions.","PeriodicalId":411100,"journal":{"name":"WPMVP '14","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"High level transforms for SIMD and low-level computer vision algorithms\",\"authors\":\"L. Lacassagne, D. Etiemble, A. Zahraee, A. Dominguez, P. Vezolle\",\"doi\":\"10.1145/2568058.2568067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a review of algorithmic transforms called High Level Transforms for IBM, Intel and ARM SIMD multicore processors to accelerate the implementation of low level image processing algorithms. We show that these optimizations provide a significant acceleration. A first evaluation of 512-bit SIMD Xeon- Phi is also presented. We focus on the point that the combination of optimizations leading to the best execution time cannot be predicted, and thus, systematic benchmarking is mandatory. Once the best configuration is found for each architecture, a comparison of these performances is presented. The Harris points detection operator is selected as being representative of low level image processing and computer vision algorithms. Being composed of five convolutions, it is more complex than a simple filter and enables more opportunities to combine optimizations. The presented work can scale across a wide range of codes using 2D stencils and convolutions.\",\"PeriodicalId\":411100,\"journal\":{\"name\":\"WPMVP '14\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WPMVP '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2568058.2568067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WPMVP '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568058.2568067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文介绍了用于IBM、Intel和ARM SIMD多核处理器的称为高级变换的算法变换,以加速低级图像处理算法的实现。我们展示了这些优化提供了显著的加速。本文还介绍了512位SIMD Xeon- Phi的首次评估。我们关注的是,无法预测导致最佳执行时间的优化组合,因此必须进行系统的基准测试。一旦找到了每种体系结构的最佳配置,就会对这些性能进行比较。选择Harris点检测算子作为低级图像处理和计算机视觉算法的代表。由于由五个卷积组成,它比一个简单的过滤器更复杂,并且提供了更多组合优化的机会。所提出的工作可以使用2D模板和卷积在广泛的代码范围内进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High level transforms for SIMD and low-level computer vision algorithms
This paper presents a review of algorithmic transforms called High Level Transforms for IBM, Intel and ARM SIMD multicore processors to accelerate the implementation of low level image processing algorithms. We show that these optimizations provide a significant acceleration. A first evaluation of 512-bit SIMD Xeon- Phi is also presented. We focus on the point that the combination of optimizations leading to the best execution time cannot be predicted, and thus, systematic benchmarking is mandatory. Once the best configuration is found for each architecture, a comparison of these performances is presented. The Harris points detection operator is selected as being representative of low level image processing and computer vision algorithms. Being composed of five convolutions, it is more complex than a simple filter and enables more opportunities to combine optimizations. The presented work can scale across a wide range of codes using 2D stencils and convolutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信