基于光谱角核的支持向量机高光谱图像分类

M. Sap, Mojtaba Kohram
{"title":"基于光谱角核的支持向量机高光谱图像分类","authors":"M. Sap, Mojtaba Kohram","doi":"10.1109/AMS.2008.152","DOIUrl":null,"url":null,"abstract":"Support vector machines (SVM) have been extensively used for classification purposes in a broad range of applications. These learning machines base their classification on the Euclidean distance of the data vectors or their dot products. These measures do not account for the spectral signature information that can be achieved from remote sensing images. Given the high value of this information, integrating it into the SVM algorithm is a reasonable suggestion. This paper utilizes the spectral angle (SA) function as a measure for classification of a hyperspectral image. The SA function is joined together with the radial basis function (RBF) to form a spectral angle based RBF function. Experimentation results are promising and confirm that this approach can compete with existing classification methods.","PeriodicalId":122964,"journal":{"name":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Spectral Angle Based Kernels for the Classification of Hyperspectral Images Using Support Vector Machines\",\"authors\":\"M. Sap, Mojtaba Kohram\",\"doi\":\"10.1109/AMS.2008.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machines (SVM) have been extensively used for classification purposes in a broad range of applications. These learning machines base their classification on the Euclidean distance of the data vectors or their dot products. These measures do not account for the spectral signature information that can be achieved from remote sensing images. Given the high value of this information, integrating it into the SVM algorithm is a reasonable suggestion. This paper utilizes the spectral angle (SA) function as a measure for classification of a hyperspectral image. The SA function is joined together with the radial basis function (RBF) to form a spectral angle based RBF function. Experimentation results are promising and confirm that this approach can compete with existing classification methods.\",\"PeriodicalId\":122964,\"journal\":{\"name\":\"2008 Second Asia International Conference on Modelling & Simulation (AMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second Asia International Conference on Modelling & Simulation (AMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2008.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second Asia International Conference on Modelling & Simulation (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2008.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

支持向量机(SVM)在分类中有着广泛的应用。这些学习机的分类基于数据向量的欧氏距离或它们的点积。这些措施没有考虑到可以从遥感图像中获得的光谱特征信息。考虑到这些信息的高价值,将其整合到SVM算法中是一个合理的建议。本文利用光谱角函数作为高光谱图像分类的度量。将SA函数与径向基函数(RBF)结合,形成基于谱角的RBF函数。实验结果表明,该方法可以与现有的分类方法相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Angle Based Kernels for the Classification of Hyperspectral Images Using Support Vector Machines
Support vector machines (SVM) have been extensively used for classification purposes in a broad range of applications. These learning machines base their classification on the Euclidean distance of the data vectors or their dot products. These measures do not account for the spectral signature information that can be achieved from remote sensing images. Given the high value of this information, integrating it into the SVM algorithm is a reasonable suggestion. This paper utilizes the spectral angle (SA) function as a measure for classification of a hyperspectral image. The SA function is joined together with the radial basis function (RBF) to form a spectral angle based RBF function. Experimentation results are promising and confirm that this approach can compete with existing classification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信