{"title":"零表的性质及其计算意义","authors":"R. Bates, B. K. Quek","doi":"10.1364/srs.1989.wc2","DOIUrl":null,"url":null,"abstract":"The spectrum (i.e. Fourier transform) of a K-dimensional compact (i.e. of finite amplitude and size) image is characterised (up to an arbitrary complex constant) by its zero-sheet, which is the (2K-2)-dimensional surface whereon the spectrum vanishes in 2K-dimensional complex Fourier space (constructed by generalising each real Fourier coordinate to a complex variable) [1].","PeriodicalId":193110,"journal":{"name":"Signal Recovery and Synthesis III","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties and Computational Implications of Zero-Sheets\",\"authors\":\"R. Bates, B. K. Quek\",\"doi\":\"10.1364/srs.1989.wc2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectrum (i.e. Fourier transform) of a K-dimensional compact (i.e. of finite amplitude and size) image is characterised (up to an arbitrary complex constant) by its zero-sheet, which is the (2K-2)-dimensional surface whereon the spectrum vanishes in 2K-dimensional complex Fourier space (constructed by generalising each real Fourier coordinate to a complex variable) [1].\",\"PeriodicalId\":193110,\"journal\":{\"name\":\"Signal Recovery and Synthesis III\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis III\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1989.wc2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis III","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1989.wc2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Properties and Computational Implications of Zero-Sheets
The spectrum (i.e. Fourier transform) of a K-dimensional compact (i.e. of finite amplitude and size) image is characterised (up to an arbitrary complex constant) by its zero-sheet, which is the (2K-2)-dimensional surface whereon the spectrum vanishes in 2K-dimensional complex Fourier space (constructed by generalising each real Fourier coordinate to a complex variable) [1].