城乡结合部火灾预测与探测集成模型

N. Alamgir, W. Boles, V. Chandran
{"title":"城乡结合部火灾预测与探测集成模型","authors":"N. Alamgir, W. Boles, V. Chandran","doi":"10.1109/DICTA.2015.7371217","DOIUrl":null,"url":null,"abstract":"This paper proposes a model that integrates new smoke detection and fire prediction techniques for the rural-urban interface area. The model aims to predict fire risk from weather parameters, and to detect smoke using video monitoring systems. Further, the fire danger index (FDI) provided by the prediction algorithm would be utilized to enhance the certainty of smoke detection and reduce false alarm rates. Experimental results illustrate that our prediction algorithm successfully predicts fire risk on a five-point scale with mean accuracy of 94.92% and the detection algorithm more effectively detects smoke compared to other algorithms by achieving 97% average accuracy.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Model Integrating Fire Prediction and Detection for Rural-Urban Interface\",\"authors\":\"N. Alamgir, W. Boles, V. Chandran\",\"doi\":\"10.1109/DICTA.2015.7371217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a model that integrates new smoke detection and fire prediction techniques for the rural-urban interface area. The model aims to predict fire risk from weather parameters, and to detect smoke using video monitoring systems. Further, the fire danger index (FDI) provided by the prediction algorithm would be utilized to enhance the certainty of smoke detection and reduce false alarm rates. Experimental results illustrate that our prediction algorithm successfully predicts fire risk on a five-point scale with mean accuracy of 94.92% and the detection algorithm more effectively detects smoke compared to other algorithms by achieving 97% average accuracy.\",\"PeriodicalId\":214897,\"journal\":{\"name\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2015.7371217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种融合新型城乡结合部烟雾探测和火灾预测技术的模型。该模型旨在根据天气参数预测火灾风险,并利用视频监控系统探测烟雾。此外,利用预测算法提供的火灾危险指数(FDI)来提高烟雾探测的确定性,降低虚警率。实验结果表明,我们的预测算法成功地预测了五级火灾风险,平均准确率为94.92%,检测算法比其他算法更有效地检测烟雾,平均准确率达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model Integrating Fire Prediction and Detection for Rural-Urban Interface
This paper proposes a model that integrates new smoke detection and fire prediction techniques for the rural-urban interface area. The model aims to predict fire risk from weather parameters, and to detect smoke using video monitoring systems. Further, the fire danger index (FDI) provided by the prediction algorithm would be utilized to enhance the certainty of smoke detection and reduce false alarm rates. Experimental results illustrate that our prediction algorithm successfully predicts fire risk on a five-point scale with mean accuracy of 94.92% and the detection algorithm more effectively detects smoke compared to other algorithms by achieving 97% average accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信