利用递归神经网络通过眼球运动进行生物特征识别

Shaohua Jia, D. Koh, Amanda Seccia, Pasha Antonenko, Richard L. Lamb, Andreas Keil, M. Schneps, M. Pomplun
{"title":"利用递归神经网络通过眼球运动进行生物特征识别","authors":"Shaohua Jia, D. Koh, Amanda Seccia, Pasha Antonenko, Richard L. Lamb, Andreas Keil, M. Schneps, M. Pomplun","doi":"10.1109/ICBK.2018.00016","DOIUrl":null,"url":null,"abstract":"Eye movement biometrics have traditionally been tackled by using handcrafted features which lead to complex computation and heavy reliance on experimental design. The authors of this study present a general recurrent neural network framework for biometric recognition through eye movements whereby the dynamic features and temporal dependencies are automatically learned from a short data window extracted from a sequence of raw eye movement signals. The model works in a task-independent manner by using short-term feature vectors combined with using different stimuli in training and testing. The model is trained end-to-end using backpropagation and mini-batch gradient descent. We evaluate our model on a dataset with 32 subjects presented with static images, and the results show that our deep learning model significantly outperforms previous methods. The achieved Rank-1 Identification Rate (Rank-1 IR) for the identification scenario is 96.3% and the Equal Error Rate (EER) for the verification scenario is 0.85%.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Biometric Recognition Through Eye Movements Using a Recurrent Neural Network\",\"authors\":\"Shaohua Jia, D. Koh, Amanda Seccia, Pasha Antonenko, Richard L. Lamb, Andreas Keil, M. Schneps, M. Pomplun\",\"doi\":\"10.1109/ICBK.2018.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eye movement biometrics have traditionally been tackled by using handcrafted features which lead to complex computation and heavy reliance on experimental design. The authors of this study present a general recurrent neural network framework for biometric recognition through eye movements whereby the dynamic features and temporal dependencies are automatically learned from a short data window extracted from a sequence of raw eye movement signals. The model works in a task-independent manner by using short-term feature vectors combined with using different stimuli in training and testing. The model is trained end-to-end using backpropagation and mini-batch gradient descent. We evaluate our model on a dataset with 32 subjects presented with static images, and the results show that our deep learning model significantly outperforms previous methods. The achieved Rank-1 Identification Rate (Rank-1 IR) for the identification scenario is 96.3% and the Equal Error Rate (EER) for the verification scenario is 0.85%.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

眼动生物识别技术传统上是通过使用手工制作的特征来解决的,这导致复杂的计算和对实验设计的严重依赖。本研究的作者提出了一个通用的递归神经网络框架,用于通过眼动识别生物特征,其中动态特征和时间依赖性从从原始眼动信号序列中提取的短数据窗口中自动学习。该模型通过使用短期特征向量并在训练和测试中使用不同的刺激,以任务独立的方式工作。使用反向传播和小批量梯度下降对模型进行端到端训练。我们在一个包含32个静态图像的数据集上评估了我们的模型,结果表明我们的深度学习模型显著优于以前的方法。识别场景的Rank-1识别率(Rank-1 IR)为96.3%,验证场景的等错误率(EER)为0.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric Recognition Through Eye Movements Using a Recurrent Neural Network
Eye movement biometrics have traditionally been tackled by using handcrafted features which lead to complex computation and heavy reliance on experimental design. The authors of this study present a general recurrent neural network framework for biometric recognition through eye movements whereby the dynamic features and temporal dependencies are automatically learned from a short data window extracted from a sequence of raw eye movement signals. The model works in a task-independent manner by using short-term feature vectors combined with using different stimuli in training and testing. The model is trained end-to-end using backpropagation and mini-batch gradient descent. We evaluate our model on a dataset with 32 subjects presented with static images, and the results show that our deep learning model significantly outperforms previous methods. The achieved Rank-1 Identification Rate (Rank-1 IR) for the identification scenario is 96.3% and the Equal Error Rate (EER) for the verification scenario is 0.85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信