{"title":"展示产品无参考客观质量评价方法","authors":"Huiqing Zhang, Donghao Li, Lifang Wu, Zhifang Xia","doi":"10.1109/VCIP49819.2020.9301894","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the spread of electronic devices especially the mobile phones, which have become almost the necessities in people’s daily lives. An effective and efficient technique for blindly assessing the quality of display products is greatly helpful to improve the experiences of users, such as displaying the pictures or texts in a more comfortable manner. In this paper, we put forward a novel no-reference (NR) quality metric of display products, dubbed as NQMDP. First, we have established a new subjective photo quality database, in which 50 photos shown on three different types of display products were captured to constitute a total of 150 photos and then scored by more than 40 inexperienced observers. Second, 19 effective image features are extracted by using six different influencing factors (including complexity, contrast, sharpness, brightness, colorfulness and naturalness) on the quality of display products and then were learned with the support vector regressor (SVR) to estimate the objective quality score of each photo. Results of experiments show that our proposed method has obtained better performance than the state-of-the-art algorithms.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"No-Reference Objective Quality Assessment Method of Display Products\",\"authors\":\"Huiqing Zhang, Donghao Li, Lifang Wu, Zhifang Xia\",\"doi\":\"10.1109/VCIP49819.2020.9301894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed the spread of electronic devices especially the mobile phones, which have become almost the necessities in people’s daily lives. An effective and efficient technique for blindly assessing the quality of display products is greatly helpful to improve the experiences of users, such as displaying the pictures or texts in a more comfortable manner. In this paper, we put forward a novel no-reference (NR) quality metric of display products, dubbed as NQMDP. First, we have established a new subjective photo quality database, in which 50 photos shown on three different types of display products were captured to constitute a total of 150 photos and then scored by more than 40 inexperienced observers. Second, 19 effective image features are extracted by using six different influencing factors (including complexity, contrast, sharpness, brightness, colorfulness and naturalness) on the quality of display products and then were learned with the support vector regressor (SVR) to estimate the objective quality score of each photo. Results of experiments show that our proposed method has obtained better performance than the state-of-the-art algorithms.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
No-Reference Objective Quality Assessment Method of Display Products
Recent years have witnessed the spread of electronic devices especially the mobile phones, which have become almost the necessities in people’s daily lives. An effective and efficient technique for blindly assessing the quality of display products is greatly helpful to improve the experiences of users, such as displaying the pictures or texts in a more comfortable manner. In this paper, we put forward a novel no-reference (NR) quality metric of display products, dubbed as NQMDP. First, we have established a new subjective photo quality database, in which 50 photos shown on three different types of display products were captured to constitute a total of 150 photos and then scored by more than 40 inexperienced observers. Second, 19 effective image features are extracted by using six different influencing factors (including complexity, contrast, sharpness, brightness, colorfulness and naturalness) on the quality of display products and then were learned with the support vector regressor (SVR) to estimate the objective quality score of each photo. Results of experiments show that our proposed method has obtained better performance than the state-of-the-art algorithms.