使用Microsoft Azure上的逻辑通道进行高效、对抗性的邻居发现

Mehmet Sinan Inci, Gorka Irazoqui Apecechea, T. Eisenbarth, B. Sunar
{"title":"使用Microsoft Azure上的逻辑通道进行高效、对抗性的邻居发现","authors":"Mehmet Sinan Inci, Gorka Irazoqui Apecechea, T. Eisenbarth, B. Sunar","doi":"10.1145/2991079.2991113","DOIUrl":null,"url":null,"abstract":"We introduce an effective technique that exploits logical channels for malicious co-location and target identification on Microsoft Azure cloud instances. Specifically, we employ-two co-location scenarios: targeted co-location with a specific victim or co-location with subsequent identification of victims of interest. We develop a novel, noise-resistant co-location detection method through the network channel that provides fast, reliable results with no cooperation from the victim. Also, our method does not require access to the victim instance neither as a legitimate user nor a malicious attacker. The efficacy of the proposed technique enables practical QoS degradation attacks which are easy and cheap to implement yet hard to discover. The slightest performance degradation in web interfaces or time critical applications can result in significant financial losses. To this end, we show that once co-located, a malicious instance can use memory bus locking to render the victim server unusable to the customers. This work underlines the need for cloud service providers to apply stronger isolation techniques.","PeriodicalId":419419,"journal":{"name":"Proceedings of the 32nd Annual Conference on Computer Security Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Efficient, adversarial neighbor discovery using logical channels on Microsoft Azure\",\"authors\":\"Mehmet Sinan Inci, Gorka Irazoqui Apecechea, T. Eisenbarth, B. Sunar\",\"doi\":\"10.1145/2991079.2991113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an effective technique that exploits logical channels for malicious co-location and target identification on Microsoft Azure cloud instances. Specifically, we employ-two co-location scenarios: targeted co-location with a specific victim or co-location with subsequent identification of victims of interest. We develop a novel, noise-resistant co-location detection method through the network channel that provides fast, reliable results with no cooperation from the victim. Also, our method does not require access to the victim instance neither as a legitimate user nor a malicious attacker. The efficacy of the proposed technique enables practical QoS degradation attacks which are easy and cheap to implement yet hard to discover. The slightest performance degradation in web interfaces or time critical applications can result in significant financial losses. To this end, we show that once co-located, a malicious instance can use memory bus locking to render the victim server unusable to the customers. This work underlines the need for cloud service providers to apply stronger isolation techniques.\",\"PeriodicalId\":419419,\"journal\":{\"name\":\"Proceedings of the 32nd Annual Conference on Computer Security Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Annual Conference on Computer Security Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2991079.2991113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual Conference on Computer Security Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2991079.2991113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们介绍了一种有效的技术,利用逻辑通道在Microsoft Azure云实例上进行恶意的协同定位和目标识别。具体来说,我们采用了两种协同定位方案:与特定受害者有针对性地协同定位,或随后识别感兴趣的受害者。我们开发了一种新颖的,抗噪声的共定位检测方法,通过网络通道提供快速,可靠的结果,而无需受害者的合作。此外,我们的方法不需要以合法用户或恶意攻击者的身份访问受害实例。该技术的有效性使得QoS退化攻击易于实现,成本低,但难以发现。在web界面或时间关键型应用程序中,最轻微的性能下降都可能导致重大的财务损失。为此,我们展示了一旦共定位,恶意实例可以使用内存总线锁定使受害者服务器无法对客户使用。这项工作强调了云服务提供商需要采用更强的隔离技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient, adversarial neighbor discovery using logical channels on Microsoft Azure
We introduce an effective technique that exploits logical channels for malicious co-location and target identification on Microsoft Azure cloud instances. Specifically, we employ-two co-location scenarios: targeted co-location with a specific victim or co-location with subsequent identification of victims of interest. We develop a novel, noise-resistant co-location detection method through the network channel that provides fast, reliable results with no cooperation from the victim. Also, our method does not require access to the victim instance neither as a legitimate user nor a malicious attacker. The efficacy of the proposed technique enables practical QoS degradation attacks which are easy and cheap to implement yet hard to discover. The slightest performance degradation in web interfaces or time critical applications can result in significant financial losses. To this end, we show that once co-located, a malicious instance can use memory bus locking to render the victim server unusable to the customers. This work underlines the need for cloud service providers to apply stronger isolation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信