基于多层次多模态融合网络的手写体中文文本识别

Yuhuan Xiu, Qingqing Wang, Hongjian Zhan, Man Lan, Yue Lu
{"title":"基于多层次多模态融合网络的手写体中文文本识别","authors":"Yuhuan Xiu, Qingqing Wang, Hongjian Zhan, Man Lan, Yue Lu","doi":"10.1109/ICDAR.2019.00235","DOIUrl":null,"url":null,"abstract":"Handwritten Chinese text recognition (HCTR) has received extensive attention from the community of pattern recognition in the past decades. Most existing deep learning methods consist of two stages, i.e., training a text recognition network on the base of visual information, followed by incorporating language constrains with various language models. Therefore, the inherent linguistic semantic information is often neglected when designing the recognition network. To tackle this problem, in this work, we propose a novel multi-level multimodal fusion network and properly embed it into an attention-based LSTM so that both the visual information and the linguistic semantic information can be fully leveraged when predicting sequential outputs from the feature vectors. Experimental results on the ICDAR-2013 competition dataset demonstrate a comparable result with the state-of-the-art approaches.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Handwritten Chinese Text Recognizer Applying Multi-level Multimodal Fusion Network\",\"authors\":\"Yuhuan Xiu, Qingqing Wang, Hongjian Zhan, Man Lan, Yue Lu\",\"doi\":\"10.1109/ICDAR.2019.00235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten Chinese text recognition (HCTR) has received extensive attention from the community of pattern recognition in the past decades. Most existing deep learning methods consist of two stages, i.e., training a text recognition network on the base of visual information, followed by incorporating language constrains with various language models. Therefore, the inherent linguistic semantic information is often neglected when designing the recognition network. To tackle this problem, in this work, we propose a novel multi-level multimodal fusion network and properly embed it into an attention-based LSTM so that both the visual information and the linguistic semantic information can be fully leveraged when predicting sequential outputs from the feature vectors. Experimental results on the ICDAR-2013 competition dataset demonstrate a comparable result with the state-of-the-art approaches.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近几十年来,手写体中文文本识别(HCTR)受到模式识别界的广泛关注。大多数现有的深度学习方法包括两个阶段,即基于视觉信息训练文本识别网络,然后将语言约束与各种语言模型结合起来。因此,在设计识别网络时,往往忽略了固有的语言语义信息。为了解决这一问题,我们提出了一种新的多层次多模态融合网络,并将其适当嵌入到基于注意力的LSTM中,以便在预测特征向量的顺序输出时充分利用视觉信息和语言语义信息。在ICDAR-2013竞赛数据集上的实验结果表明,与最先进的方法具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Handwritten Chinese Text Recognizer Applying Multi-level Multimodal Fusion Network
Handwritten Chinese text recognition (HCTR) has received extensive attention from the community of pattern recognition in the past decades. Most existing deep learning methods consist of two stages, i.e., training a text recognition network on the base of visual information, followed by incorporating language constrains with various language models. Therefore, the inherent linguistic semantic information is often neglected when designing the recognition network. To tackle this problem, in this work, we propose a novel multi-level multimodal fusion network and properly embed it into an attention-based LSTM so that both the visual information and the linguistic semantic information can be fully leveraged when predicting sequential outputs from the feature vectors. Experimental results on the ICDAR-2013 competition dataset demonstrate a comparable result with the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信