随机量化下联邦学习的收敛性

Wenling Li, Yuhao Li, Junping Du
{"title":"随机量化下联邦学习的收敛性","authors":"Wenling Li, Yuhao Li, Junping Du","doi":"10.1109/CCIS53392.2021.9754534","DOIUrl":null,"url":null,"abstract":"This paper studies the distributed federated learning problem when the exchanged information between the server and the workers is quantized. A novel quantized federated averaging algorithm is developed by applying stochastic quantization scheme to the local and global model parameters. Specifically, the server broadcasts the quantized global model parameter to the workers; the workers update local model parameters using their own datasets and upload the quantized version to the server; then the server updates the global model parameter by aggregating all the quantized local model parameters and its previous global model parameter. This algorithm can be interpreted as a quantized variant of the federated averaging algorithm. Extensive experiments using realistic data are provided to show the effectiveness of the proposed algorithm.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Convergence of Federated Learning with Stochastic Quantization\",\"authors\":\"Wenling Li, Yuhao Li, Junping Du\",\"doi\":\"10.1109/CCIS53392.2021.9754534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the distributed federated learning problem when the exchanged information between the server and the workers is quantized. A novel quantized federated averaging algorithm is developed by applying stochastic quantization scheme to the local and global model parameters. Specifically, the server broadcasts the quantized global model parameter to the workers; the workers update local model parameters using their own datasets and upload the quantized version to the server; then the server updates the global model parameter by aggregating all the quantized local model parameters and its previous global model parameter. This algorithm can be interpreted as a quantized variant of the federated averaging algorithm. Extensive experiments using realistic data are provided to show the effectiveness of the proposed algorithm.\",\"PeriodicalId\":191226,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS53392.2021.9754534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了服务器与工作人员之间交换信息量化时的分布式联邦学习问题。将随机量化方案应用于局部和全局模型参数,提出了一种新的量化联邦平均算法。具体来说,服务器将量化的全局模型参数广播给工作器;工作人员使用自己的数据集更新局部模型参数,并将量化版本上传到服务器;然后,服务器通过汇总所有量化的局部模型参数和之前的全局模型参数来更新全局模型参数。该算法可以被解释为联邦平均算法的量子化变体。利用实际数据进行了大量实验,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Convergence of Federated Learning with Stochastic Quantization
This paper studies the distributed federated learning problem when the exchanged information between the server and the workers is quantized. A novel quantized federated averaging algorithm is developed by applying stochastic quantization scheme to the local and global model parameters. Specifically, the server broadcasts the quantized global model parameter to the workers; the workers update local model parameters using their own datasets and upload the quantized version to the server; then the server updates the global model parameter by aggregating all the quantized local model parameters and its previous global model parameter. This algorithm can be interpreted as a quantized variant of the federated averaging algorithm. Extensive experiments using realistic data are provided to show the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信