{"title":"随机量化下联邦学习的收敛性","authors":"Wenling Li, Yuhao Li, Junping Du","doi":"10.1109/CCIS53392.2021.9754534","DOIUrl":null,"url":null,"abstract":"This paper studies the distributed federated learning problem when the exchanged information between the server and the workers is quantized. A novel quantized federated averaging algorithm is developed by applying stochastic quantization scheme to the local and global model parameters. Specifically, the server broadcasts the quantized global model parameter to the workers; the workers update local model parameters using their own datasets and upload the quantized version to the server; then the server updates the global model parameter by aggregating all the quantized local model parameters and its previous global model parameter. This algorithm can be interpreted as a quantized variant of the federated averaging algorithm. Extensive experiments using realistic data are provided to show the effectiveness of the proposed algorithm.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Convergence of Federated Learning with Stochastic Quantization\",\"authors\":\"Wenling Li, Yuhao Li, Junping Du\",\"doi\":\"10.1109/CCIS53392.2021.9754534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the distributed federated learning problem when the exchanged information between the server and the workers is quantized. A novel quantized federated averaging algorithm is developed by applying stochastic quantization scheme to the local and global model parameters. Specifically, the server broadcasts the quantized global model parameter to the workers; the workers update local model parameters using their own datasets and upload the quantized version to the server; then the server updates the global model parameter by aggregating all the quantized local model parameters and its previous global model parameter. This algorithm can be interpreted as a quantized variant of the federated averaging algorithm. Extensive experiments using realistic data are provided to show the effectiveness of the proposed algorithm.\",\"PeriodicalId\":191226,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS53392.2021.9754534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Convergence of Federated Learning with Stochastic Quantization
This paper studies the distributed federated learning problem when the exchanged information between the server and the workers is quantized. A novel quantized federated averaging algorithm is developed by applying stochastic quantization scheme to the local and global model parameters. Specifically, the server broadcasts the quantized global model parameter to the workers; the workers update local model parameters using their own datasets and upload the quantized version to the server; then the server updates the global model parameter by aggregating all the quantized local model parameters and its previous global model parameter. This algorithm can be interpreted as a quantized variant of the federated averaging algorithm. Extensive experiments using realistic data are provided to show the effectiveness of the proposed algorithm.