非线性非最小相位系统输出跟踪的改进最陡下降迭代学习控制

J. Naiborhu, F. Firman, M. L. Sitanggang
{"title":"非线性非最小相位系统输出跟踪的改进最陡下降迭代学习控制","authors":"J. Naiborhu, F. Firman, M. L. Sitanggang","doi":"10.1109/WCICA.2012.6358092","DOIUrl":null,"url":null,"abstract":"Iterative learning control (ILC) refers to a class of self-tuning controllers where the system performance of a specified task is gradually improved or perfected based on the previous performance of identical tasks. In this paper, based on the modified steepest descent control we proposed the iterative learning control algorithm for nonlinear nonminimum phase system. By applying the modified steepest descent control we have the extended system with relative degree greater one than original systems. By extending result of Gosh, cs [1], the convergence of algorithm is guaranteed.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative learning control based on modified steepest descent control for output tracking of nonlinear non-minimum phase systems\",\"authors\":\"J. Naiborhu, F. Firman, M. L. Sitanggang\",\"doi\":\"10.1109/WCICA.2012.6358092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative learning control (ILC) refers to a class of self-tuning controllers where the system performance of a specified task is gradually improved or perfected based on the previous performance of identical tasks. In this paper, based on the modified steepest descent control we proposed the iterative learning control algorithm for nonlinear nonminimum phase system. By applying the modified steepest descent control we have the extended system with relative degree greater one than original systems. By extending result of Gosh, cs [1], the convergence of algorithm is guaranteed.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6358092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6358092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迭代学习控制(Iterative learning control, ILC)是一类自整定控制器,在相同任务之前的性能基础上,逐步改进或完善指定任务的系统性能。本文基于改进的最陡下降控制,提出了非线性非最小相位系统的迭代学习控制算法。采用改进的最陡下降控制,得到了比原系统相对度大1的扩展系统。通过推广Gosh, cs[1]的结果,保证了算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative learning control based on modified steepest descent control for output tracking of nonlinear non-minimum phase systems
Iterative learning control (ILC) refers to a class of self-tuning controllers where the system performance of a specified task is gradually improved or perfected based on the previous performance of identical tasks. In this paper, based on the modified steepest descent control we proposed the iterative learning control algorithm for nonlinear nonminimum phase system. By applying the modified steepest descent control we have the extended system with relative degree greater one than original systems. By extending result of Gosh, cs [1], the convergence of algorithm is guaranteed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信