用于不完全时间序列预测的FI-GEM网络

S. Chiewchanwattana, C. Lursinsap
{"title":"用于不完全时间序列预测的FI-GEM网络","authors":"S. Chiewchanwattana, C. Lursinsap","doi":"10.1109/IJCNN.2002.1007784","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of incomplete time-series prediction by FI-GEM (fill-in-generalized ensemble method) networks, which has two steps. The first step is composed of several fill-in methods for preprocessing the missing value of time-series and the outcome are the complete time-series data. The second step is composed of the several individual multilayer perceptrons (MLP) whose their outputs are combined by the generalized ensemble method. There are five fill-in methods that are explored: cubic smoothing spline interpolation, and four imputation methods: EM (expectation maximization), regularized EM, average EM, average regularized EM. Mackey-Glass chaotic time-series and sunspots data are used for evaluating our approach. The experimental results show that the prediction accuracy of FI-GEM networks are much better than individual neural networks.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"FI-GEM networks for incomplete time-series prediction\",\"authors\":\"S. Chiewchanwattana, C. Lursinsap\",\"doi\":\"10.1109/IJCNN.2002.1007784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of incomplete time-series prediction by FI-GEM (fill-in-generalized ensemble method) networks, which has two steps. The first step is composed of several fill-in methods for preprocessing the missing value of time-series and the outcome are the complete time-series data. The second step is composed of the several individual multilayer perceptrons (MLP) whose their outputs are combined by the generalized ensemble method. There are five fill-in methods that are explored: cubic smoothing spline interpolation, and four imputation methods: EM (expectation maximization), regularized EM, average EM, average regularized EM. Mackey-Glass chaotic time-series and sunspots data are used for evaluating our approach. The experimental results show that the prediction accuracy of FI-GEM networks are much better than individual neural networks.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了FI-GEM (fill-in-generalized ensemble method)网络的不完全时间序列预测问题,该方法分为两个步骤。第一步由几种填充方法对时间序列的缺失值进行预处理,得到完整的时间序列数据。第二步是由几个独立的多层感知器(MLP)组成,这些感知器的输出通过广义集成方法组合。研究了五种填充方法:三次平滑样条插值法;四种插值方法:期望最大化法、正则化法、平均法、平均正则化法。使用Mackey-Glass混沌时间序列和太阳黑子数据对我们的方法进行了评价。实验结果表明,FI-GEM网络的预测精度远高于单个神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FI-GEM networks for incomplete time-series prediction
This paper considers the problem of incomplete time-series prediction by FI-GEM (fill-in-generalized ensemble method) networks, which has two steps. The first step is composed of several fill-in methods for preprocessing the missing value of time-series and the outcome are the complete time-series data. The second step is composed of the several individual multilayer perceptrons (MLP) whose their outputs are combined by the generalized ensemble method. There are five fill-in methods that are explored: cubic smoothing spline interpolation, and four imputation methods: EM (expectation maximization), regularized EM, average EM, average regularized EM. Mackey-Glass chaotic time-series and sunspots data are used for evaluating our approach. The experimental results show that the prediction accuracy of FI-GEM networks are much better than individual neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信