使用轨迹级行为学习的交互式人群内容生成和分析

Sujeong Kim, Aniket Bera, Dinesh Manocha
{"title":"使用轨迹级行为学习的交互式人群内容生成和分析","authors":"Sujeong Kim, Aniket Bera, Dinesh Manocha","doi":"10.1109/ISM.2015.89","DOIUrl":null,"url":null,"abstract":"We present an interactive approach for analyzing crowd videos and generating content for multimedia applications. Our formulation combines online tracking algorithms from computer vision, non-linear pedestrian motion models from computer graphics, and machine learning techniques to automatically compute the trajectory-level pedestrian behaviors for each agent in the video. These learned behaviors are used to detect anomalous behaviors, perform crowd replication, augment crowd videos with virtual agents, and segment the motion of pedestrians. We demonstrate the performance of these tasks using indoor and outdoor crowd video benchmarks consisting of tens of human agents, moreover, our algorithm takes less than a tenth of a second per frame on a multi-core PC. The overall approach can handle dense and heterogeneous crowd behaviors and is useful for realtime crowd scene analysis applications.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Interactive Crowd Content Generation and Analysis Using Trajectory-Level Behavior Learning\",\"authors\":\"Sujeong Kim, Aniket Bera, Dinesh Manocha\",\"doi\":\"10.1109/ISM.2015.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an interactive approach for analyzing crowd videos and generating content for multimedia applications. Our formulation combines online tracking algorithms from computer vision, non-linear pedestrian motion models from computer graphics, and machine learning techniques to automatically compute the trajectory-level pedestrian behaviors for each agent in the video. These learned behaviors are used to detect anomalous behaviors, perform crowd replication, augment crowd videos with virtual agents, and segment the motion of pedestrians. We demonstrate the performance of these tasks using indoor and outdoor crowd video benchmarks consisting of tens of human agents, moreover, our algorithm takes less than a tenth of a second per frame on a multi-core PC. The overall approach can handle dense and heterogeneous crowd behaviors and is useful for realtime crowd scene analysis applications.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种交互式方法来分析人群视频并为多媒体应用程序生成内容。我们的公式结合了计算机视觉的在线跟踪算法、计算机图形学的非线性行人运动模型和机器学习技术,自动计算视频中每个代理的轨迹级行人行为。这些学习行为用于检测异常行为,执行人群复制,用虚拟代理增强人群视频,并分割行人的运动。我们使用由数十个人类代理组成的室内和室外人群视频基准来演示这些任务的性能,此外,我们的算法在多核PC上每帧耗时不到十分之一秒。总体而言,该方法可以处理密集和异构的人群行为,对于实时人群场景分析应用非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Crowd Content Generation and Analysis Using Trajectory-Level Behavior Learning
We present an interactive approach for analyzing crowd videos and generating content for multimedia applications. Our formulation combines online tracking algorithms from computer vision, non-linear pedestrian motion models from computer graphics, and machine learning techniques to automatically compute the trajectory-level pedestrian behaviors for each agent in the video. These learned behaviors are used to detect anomalous behaviors, perform crowd replication, augment crowd videos with virtual agents, and segment the motion of pedestrians. We demonstrate the performance of these tasks using indoor and outdoor crowd video benchmarks consisting of tens of human agents, moreover, our algorithm takes less than a tenth of a second per frame on a multi-core PC. The overall approach can handle dense and heterogeneous crowd behaviors and is useful for realtime crowd scene analysis applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信