使用密集向量搜索查询视频手语词典

Mathieu De Coster, J. Dambre
{"title":"使用密集向量搜索查询视频手语词典","authors":"Mathieu De Coster, J. Dambre","doi":"10.1109/ICASSPW59220.2023.10193531","DOIUrl":null,"url":null,"abstract":"To search for an unknown sign in a sign language dictionary, users typically indicate parameters of the query, e.g., hand shape and signing location. Recent advances in sign language recognition enable video-based sign language dictionary search. In such a system, users can record an unknown sign and retrieve a list of signs that look similar, preferably including the queried sign as one of the top results. We have realized such a system by interpreting it as a dense vector search task. First, we learn a mapping (embedding) from sign videos to a vector space. The dictionary can then be searched by looking for the vectors in this space that are closest to the vector corresponding to the query. We present a proof of concept on a subset of the Flemish Sign Language dictionary. Further research is required to scale up our method to the large vocabularies of entire dictionaries.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Querying A Sign Language Dictionary with Videos Using Dense Vector Search\",\"authors\":\"Mathieu De Coster, J. Dambre\",\"doi\":\"10.1109/ICASSPW59220.2023.10193531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To search for an unknown sign in a sign language dictionary, users typically indicate parameters of the query, e.g., hand shape and signing location. Recent advances in sign language recognition enable video-based sign language dictionary search. In such a system, users can record an unknown sign and retrieve a list of signs that look similar, preferably including the queried sign as one of the top results. We have realized such a system by interpreting it as a dense vector search task. First, we learn a mapping (embedding) from sign videos to a vector space. The dictionary can then be searched by looking for the vectors in this space that are closest to the vector corresponding to the query. We present a proof of concept on a subset of the Flemish Sign Language dictionary. Further research is required to scale up our method to the large vocabularies of entire dictionaries.\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要在手语词典中搜索未知的手势,用户通常需要指明查询的参数,例如手的形状和手势的位置。手语识别的最新进展使基于视频的手语字典搜索成为可能。在这样的系统中,用户可以记录一个未知的标志,并检索看起来相似的标志列表,最好将所查询的标志作为顶部结果之一。我们通过将其解释为密集向量搜索任务实现了这样一个系统。首先,我们学习从符号视频到向量空间的映射(嵌入)。然后可以通过在该空间中查找与查询对应的向量最接近的向量来搜索字典。我们在佛兰德语手语词典的一个子集上提出了概念证明。需要进一步的研究将我们的方法扩展到整个字典的大词汇量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Querying A Sign Language Dictionary with Videos Using Dense Vector Search
To search for an unknown sign in a sign language dictionary, users typically indicate parameters of the query, e.g., hand shape and signing location. Recent advances in sign language recognition enable video-based sign language dictionary search. In such a system, users can record an unknown sign and retrieve a list of signs that look similar, preferably including the queried sign as one of the top results. We have realized such a system by interpreting it as a dense vector search task. First, we learn a mapping (embedding) from sign videos to a vector space. The dictionary can then be searched by looking for the vectors in this space that are closest to the vector corresponding to the query. We present a proof of concept on a subset of the Flemish Sign Language dictionary. Further research is required to scale up our method to the large vocabularies of entire dictionaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信