基于混合文化自适应格式的曲面积分数值逼近

Pritikanta Patra, Debasish Das, R. B. Dash
{"title":"基于混合文化自适应格式的曲面积分数值逼近","authors":"Pritikanta Patra, Debasish Das, R. B. Dash","doi":"10.22457/apam.v22n1a05678","DOIUrl":null,"url":null,"abstract":"This research described the development of a new mixed cubature rule for evaluation of surface integrals over rectangular domains. Taking the linear combination of Clenshaw-Curtis 5- point rule and Gauss-Legendre 3-point rule ( each rule is of same precision i.e. precision 5) in two dimensions the mixed cubature rule of higher precision was formed (i.e. precision 7). This method is iterative in nature and relies on the function values at uneven spaced points on the rectangle of integration. Also as supplement, an adaptive cubature algorithm is designed in order to reinforce our mixed cubature rule. With the illustration of numerical examples this mixed cubature rule is turned out to be more powerful when compared with the constituents standard cubature procedures both in adaptive and non-adaptive environment.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Approximation of Surface Integrals Using Mixed Cubature Adaptive Scheme\",\"authors\":\"Pritikanta Patra, Debasish Das, R. B. Dash\",\"doi\":\"10.22457/apam.v22n1a05678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research described the development of a new mixed cubature rule for evaluation of surface integrals over rectangular domains. Taking the linear combination of Clenshaw-Curtis 5- point rule and Gauss-Legendre 3-point rule ( each rule is of same precision i.e. precision 5) in two dimensions the mixed cubature rule of higher precision was formed (i.e. precision 7). This method is iterative in nature and relies on the function values at uneven spaced points on the rectangle of integration. Also as supplement, an adaptive cubature algorithm is designed in order to reinforce our mixed cubature rule. With the illustration of numerical examples this mixed cubature rule is turned out to be more powerful when compared with the constituents standard cubature procedures both in adaptive and non-adaptive environment.\",\"PeriodicalId\":305863,\"journal\":{\"name\":\"Annals of Pure and Applied Mathematics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22457/apam.v22n1a05678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v22n1a05678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究描述了一种新的用于计算矩形区域表面积分的混合培养规则的发展。将二维的Clenshaw-Curtis 5点规则和Gauss-Legendre 3点规则(每条规则精度相同,即精度5)线性组合,形成精度更高的混合立体规则(即精度7)。该方法本质上是迭代的,依赖于积分矩形上不均匀间隔点处的函数值。同时,为了加强混合培养规则,设计了一种自适应培养算法。通过数值算例说明,无论在自适应环境还是非自适应环境下,该混合培养规则都比成分标准培养程序更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Approximation of Surface Integrals Using Mixed Cubature Adaptive Scheme
This research described the development of a new mixed cubature rule for evaluation of surface integrals over rectangular domains. Taking the linear combination of Clenshaw-Curtis 5- point rule and Gauss-Legendre 3-point rule ( each rule is of same precision i.e. precision 5) in two dimensions the mixed cubature rule of higher precision was formed (i.e. precision 7). This method is iterative in nature and relies on the function values at uneven spaced points on the rectangle of integration. Also as supplement, an adaptive cubature algorithm is designed in order to reinforce our mixed cubature rule. With the illustration of numerical examples this mixed cubature rule is turned out to be more powerful when compared with the constituents standard cubature procedures both in adaptive and non-adaptive environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信