{"title":"吸收速度对CO2分离N2和CH4过程中醋酸纤维素中空纤维膜制备的影响","authors":"M. Mubashir, Y. Yeong, T. Chew, K. K. Lau","doi":"10.11113/AMST.V22N2.129","DOIUrl":null,"url":null,"abstract":"Over the past decades, hollow fibre membranes (HFMs) have attracted much interest of the researchers due to their extensive industrial usage in CO2 separation processes. In the current study, we have reported the effect of take-up speed on the fabrication of cellulose acetate (CA) HFMs in gas separation. The morphology of the resultant HFMs was examined by using field emission scanning electron microscopy (FESEM). The gas permeation results obtained in this work revealed that, when take-up speed increased from free fall to 12.2 m/min, CO2, N2 and CH4 permeances of the resultant CA HFM were reduced 55.68%, 87.25% and 82.00%, respectively. Meanwhile, gas pair selectivities were increased 146.18% and 247.76% respectively. These results were mainly due to the increment of polymer orientation and chain packing which suppressed the macro-voids in the HFMs and thus, the gas pair selectivities were improved. Furthermore, it was found that CA HFM spun at take-up speed of 12.2 m/min showed highest CO2/CH4 and CO2/N2 ideal selectivities of 3.9 and 3.6, respectively.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Take-up Speed on the Fabrication of Cellulose Acetate Hollow Fibre Membrane in CO2 Separation from N2 and CH4\",\"authors\":\"M. Mubashir, Y. Yeong, T. Chew, K. K. Lau\",\"doi\":\"10.11113/AMST.V22N2.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decades, hollow fibre membranes (HFMs) have attracted much interest of the researchers due to their extensive industrial usage in CO2 separation processes. In the current study, we have reported the effect of take-up speed on the fabrication of cellulose acetate (CA) HFMs in gas separation. The morphology of the resultant HFMs was examined by using field emission scanning electron microscopy (FESEM). The gas permeation results obtained in this work revealed that, when take-up speed increased from free fall to 12.2 m/min, CO2, N2 and CH4 permeances of the resultant CA HFM were reduced 55.68%, 87.25% and 82.00%, respectively. Meanwhile, gas pair selectivities were increased 146.18% and 247.76% respectively. These results were mainly due to the increment of polymer orientation and chain packing which suppressed the macro-voids in the HFMs and thus, the gas pair selectivities were improved. Furthermore, it was found that CA HFM spun at take-up speed of 12.2 m/min showed highest CO2/CH4 and CO2/N2 ideal selectivities of 3.9 and 3.6, respectively.\",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/AMST.V22N2.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/AMST.V22N2.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Take-up Speed on the Fabrication of Cellulose Acetate Hollow Fibre Membrane in CO2 Separation from N2 and CH4
Over the past decades, hollow fibre membranes (HFMs) have attracted much interest of the researchers due to their extensive industrial usage in CO2 separation processes. In the current study, we have reported the effect of take-up speed on the fabrication of cellulose acetate (CA) HFMs in gas separation. The morphology of the resultant HFMs was examined by using field emission scanning electron microscopy (FESEM). The gas permeation results obtained in this work revealed that, when take-up speed increased from free fall to 12.2 m/min, CO2, N2 and CH4 permeances of the resultant CA HFM were reduced 55.68%, 87.25% and 82.00%, respectively. Meanwhile, gas pair selectivities were increased 146.18% and 247.76% respectively. These results were mainly due to the increment of polymer orientation and chain packing which suppressed the macro-voids in the HFMs and thus, the gas pair selectivities were improved. Furthermore, it was found that CA HFM spun at take-up speed of 12.2 m/min showed highest CO2/CH4 and CO2/N2 ideal selectivities of 3.9 and 3.6, respectively.