基于媒体内容时间序列变化的感性转换分析

T. Nakanishi, Ryotaro Okada, Rintaro Nakahodo
{"title":"基于媒体内容时间序列变化的感性转换分析","authors":"T. Nakanishi, Ryotaro Okada, Rintaro Nakahodo","doi":"10.1109/IIAI-AAI50415.2020.00091","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new concept, a waveform model of Kansei transition for time-series media content. It is important to apply the time-series change of media content to Kansei information processing. For example, the impression of music media content changes over time. In our model, we represent Kansei transition by time-series change of media content as waveforms. We realize new Kansei similarity by comparison with Kansei transitions represented by waveforms applying a signal processing technique. Through new Kansei similarity, it is possible to realize media content retrieval and recommendation systems corresponding to the time-series Kansei transition of media content. Our model consists of two modules: a high-order media-Kansei transformation module and a waveform similarity computation module. The high-order media-Kansei transformation module extracts each Kansei magnitude by each time from the features of media content. The waveform similarity computation module computes similarities between each waveform represented as Kansei transition.","PeriodicalId":188870,"journal":{"name":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kansei Transition Analysis by Time-series Change of Media Content\",\"authors\":\"T. Nakanishi, Ryotaro Okada, Rintaro Nakahodo\",\"doi\":\"10.1109/IIAI-AAI50415.2020.00091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new concept, a waveform model of Kansei transition for time-series media content. It is important to apply the time-series change of media content to Kansei information processing. For example, the impression of music media content changes over time. In our model, we represent Kansei transition by time-series change of media content as waveforms. We realize new Kansei similarity by comparison with Kansei transitions represented by waveforms applying a signal processing technique. Through new Kansei similarity, it is possible to realize media content retrieval and recommendation systems corresponding to the time-series Kansei transition of media content. Our model consists of two modules: a high-order media-Kansei transformation module and a waveform similarity computation module. The high-order media-Kansei transformation module extracts each Kansei magnitude by each time from the features of media content. The waveform similarity computation module computes similarities between each waveform represented as Kansei transition.\",\"PeriodicalId\":188870,\"journal\":{\"name\":\"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI50415.2020.00091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI50415.2020.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个新的概念,即时间序列媒体内容的感性转换波形模型。将媒体内容的时间序列变化应用到感性信息处理中是非常重要的。例如,对音乐媒体内容的印象随着时间的推移而变化。在我们的模型中,我们将媒体内容的时间序列变化作为波形来表示感性转换。通过与用信号处理技术表示的波形相比较,我们实现了新的感性相似度。通过新的感性相似度,可以实现与媒体内容的时间序列感性转换相对应的媒体内容检索和推荐系统。我们的模型由两个模块组成:高阶媒体-感性变换模块和波形相似度计算模块。高阶媒体-感性转换模块从媒体内容的特征中按每次提取每个感性幅度。波形相似度计算模块计算以感性转换表示的每个波形之间的相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kansei Transition Analysis by Time-series Change of Media Content
In this paper, we present a new concept, a waveform model of Kansei transition for time-series media content. It is important to apply the time-series change of media content to Kansei information processing. For example, the impression of music media content changes over time. In our model, we represent Kansei transition by time-series change of media content as waveforms. We realize new Kansei similarity by comparison with Kansei transitions represented by waveforms applying a signal processing technique. Through new Kansei similarity, it is possible to realize media content retrieval and recommendation systems corresponding to the time-series Kansei transition of media content. Our model consists of two modules: a high-order media-Kansei transformation module and a waveform similarity computation module. The high-order media-Kansei transformation module extracts each Kansei magnitude by each time from the features of media content. The waveform similarity computation module computes similarities between each waveform represented as Kansei transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信