双曲型全自同构的光滑局部刚性

B. Kalinin, V. Sadovskaya, Zhenqi Wang
{"title":"双曲型全自同构的光滑局部刚性","authors":"B. Kalinin, V. Sadovskaya, Zhenqi Wang","doi":"10.1090/cams/22","DOIUrl":null,"url":null,"abstract":"<p>We study the regularity of a conjugacy <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> between a hyperbolic toral automorphism <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and its smooth perturbation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is weakly differentiable then it is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript 1 plus upper H reverse-solidus quotation-mark older\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mtext>H\\\"older</mml:mtext>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^{1+\\text {H\\\"older}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and, if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is also weakly irreducible, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a part of the proof, we establish results of independent interest on Hölder continuity of a measurable conjugacy between linear cocycles over a hyperbolic system. As a corollary, we improve regularity of the conjugacy to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in prior local rigidity results.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smooth local rigidity for hyperbolic toral automorphisms\",\"authors\":\"B. Kalinin, V. Sadovskaya, Zhenqi Wang\",\"doi\":\"10.1090/cams/22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the regularity of a conjugacy <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> between a hyperbolic toral automorphism <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and its smooth perturbation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\">\\n <mml:semantics>\\n <mml:mi>f</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We show that if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is weakly differentiable then it is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript 1 plus upper H reverse-solidus quotation-mark older\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mtext>H\\\\\\\"older</mml:mtext>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^{1+\\\\text {H\\\\\\\"older}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and, if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is also weakly irreducible, then <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. As a part of the proof, we establish results of independent interest on Hölder continuity of a measurable conjugacy between linear cocycles over a hyperbolic system. As a corollary, we improve regularity of the conjugacy to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>C</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in prior local rigidity results.</p>\",\"PeriodicalId\":285678,\"journal\":{\"name\":\"Communications of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cams/22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了双曲总自同构a a与其光滑摄动f之间共轭H H的正则性。我们证明了如果H H是弱可微的,那么它是c1 + Hölder C^{1+\text Hölder{,如果A A也是弱不可约的,那么H H是C∞C^ }}\infty。作为证明的一部分,我们建立了关于双曲系统上线性环间可测共轭的Hölder连续性的独立有趣的结果。作为一个推论,我们改进了先前局部刚度结果中C∞C^ \infty共轭的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth local rigidity for hyperbolic toral automorphisms

We study the regularity of a conjugacy H H between a hyperbolic toral automorphism A A and its smooth perturbation f f . We show that if H H is weakly differentiable then it is C 1 + H\"older C^{1+\text {H\"older}} and, if A A is also weakly irreducible, then H H is C C^\infty . As a part of the proof, we establish results of independent interest on Hölder continuity of a measurable conjugacy between linear cocycles over a hyperbolic system. As a corollary, we improve regularity of the conjugacy to C C^\infty in prior local rigidity results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信