基于多任务学习和单侧元三重损失的广义人脸防欺骗

Chu-Chun Chuang, Chien-Yi Wang, S. Lai
{"title":"基于多任务学习和单侧元三重损失的广义人脸防欺骗","authors":"Chu-Chun Chuang, Chien-Yi Wang, S. Lai","doi":"10.1109/FG57933.2023.10042685","DOIUrl":null,"url":null,"abstract":"With the increasing variations of face presentation attacks, model generalization becomes an essential challenge for a practical face anti-spoofing system. This paper presents a generalized face anti-spoofing framework that consists of three tasks: depth estimation, face parsing, and live/spoof classification. With the pixel-wise supervision from the face parsing and depth estimation tasks, the regularized features can better distinguish spoof faces. While simulating domain shift with meta-learning techniques, the proposed one-side triplet loss can further improve the generalization capability by a large margin. Extensive experiments on four public datasets demonstrate that the proposed framework and training strategies are more effective than previous works for model generalization to unseen domains.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Face Anti-Spoofing via Multi-Task Learning and One-Side Meta Triplet Loss\",\"authors\":\"Chu-Chun Chuang, Chien-Yi Wang, S. Lai\",\"doi\":\"10.1109/FG57933.2023.10042685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing variations of face presentation attacks, model generalization becomes an essential challenge for a practical face anti-spoofing system. This paper presents a generalized face anti-spoofing framework that consists of three tasks: depth estimation, face parsing, and live/spoof classification. With the pixel-wise supervision from the face parsing and depth estimation tasks, the regularized features can better distinguish spoof faces. While simulating domain shift with meta-learning techniques, the proposed one-side triplet loss can further improve the generalization capability by a large margin. Extensive experiments on four public datasets demonstrate that the proposed framework and training strategies are more effective than previous works for model generalization to unseen domains.\",\"PeriodicalId\":318766,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FG57933.2023.10042685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着人脸呈现攻击的不断变化,模型泛化成为实际人脸防欺骗系统面临的一个重要挑战。本文提出了一个广义的人脸防欺骗框架,该框架由三个任务组成:深度估计、人脸解析和实时/欺骗分类。利用人脸解析和深度估计任务的逐像素监督,正则化特征可以更好地识别恶搞人脸。在利用元学习技术模拟域漂移的同时,提出的单侧三重态损失可以进一步提高泛化能力。在四个公共数据集上的大量实验表明,所提出的框架和训练策略在模型泛化到未知领域方面比以前的工作更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Face Anti-Spoofing via Multi-Task Learning and One-Side Meta Triplet Loss
With the increasing variations of face presentation attacks, model generalization becomes an essential challenge for a practical face anti-spoofing system. This paper presents a generalized face anti-spoofing framework that consists of three tasks: depth estimation, face parsing, and live/spoof classification. With the pixel-wise supervision from the face parsing and depth estimation tasks, the regularized features can better distinguish spoof faces. While simulating domain shift with meta-learning techniques, the proposed one-side triplet loss can further improve the generalization capability by a large margin. Extensive experiments on four public datasets demonstrate that the proposed framework and training strategies are more effective than previous works for model generalization to unseen domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信