H. Kaur, D. Koundal, Virendar Kadyan, N. Kaur, K. Polat
{"title":"用于脑肿瘤检测的自动化多模态图像融合","authors":"H. Kaur, D. Koundal, Virendar Kadyan, N. Kaur, K. Polat","doi":"10.33969/AIS.2021.31005","DOIUrl":null,"url":null,"abstract":"In medical domain, various multimodalities such as Computer tomography (CT) and Magnetic resonance imaging (MRI) are integrated into a resultant fused image. Image fusion (IF) is a method by which vital information can be preserved by extracting all important information from the multiple images into the resultant fused image. The analytical and visual image quality can be enhanced by the integration of different images. In this paper, a new algorithm has been proposed on the basis of guided filter with new fusion rule for the fusion of different imaging modalities such as MRI and Fluorodeoxyglucose images of brain for the detection of tumor. The performance of the proposed method has been evaluated and compared with state-of-the-art image fusion techniques using various qualitative as well as quantitative evaluation metrics. From the results, it has been observed that more information has achieved on edges and content visibility is also high as compared to the other techniques which makes it more suitable for real applications. The experimental results are evaluated on the basis of with-reference and without-references metric such as standard deviation, entropy, peak signal to noise ratio, mutual information etc.","PeriodicalId":273028,"journal":{"name":"Journal of Artificial Intelligence and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automated Multimodal image fusion for brain tumor detection\",\"authors\":\"H. Kaur, D. Koundal, Virendar Kadyan, N. Kaur, K. Polat\",\"doi\":\"10.33969/AIS.2021.31005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medical domain, various multimodalities such as Computer tomography (CT) and Magnetic resonance imaging (MRI) are integrated into a resultant fused image. Image fusion (IF) is a method by which vital information can be preserved by extracting all important information from the multiple images into the resultant fused image. The analytical and visual image quality can be enhanced by the integration of different images. In this paper, a new algorithm has been proposed on the basis of guided filter with new fusion rule for the fusion of different imaging modalities such as MRI and Fluorodeoxyglucose images of brain for the detection of tumor. The performance of the proposed method has been evaluated and compared with state-of-the-art image fusion techniques using various qualitative as well as quantitative evaluation metrics. From the results, it has been observed that more information has achieved on edges and content visibility is also high as compared to the other techniques which makes it more suitable for real applications. The experimental results are evaluated on the basis of with-reference and without-references metric such as standard deviation, entropy, peak signal to noise ratio, mutual information etc.\",\"PeriodicalId\":273028,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33969/AIS.2021.31005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33969/AIS.2021.31005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Multimodal image fusion for brain tumor detection
In medical domain, various multimodalities such as Computer tomography (CT) and Magnetic resonance imaging (MRI) are integrated into a resultant fused image. Image fusion (IF) is a method by which vital information can be preserved by extracting all important information from the multiple images into the resultant fused image. The analytical and visual image quality can be enhanced by the integration of different images. In this paper, a new algorithm has been proposed on the basis of guided filter with new fusion rule for the fusion of different imaging modalities such as MRI and Fluorodeoxyglucose images of brain for the detection of tumor. The performance of the proposed method has been evaluated and compared with state-of-the-art image fusion techniques using various qualitative as well as quantitative evaluation metrics. From the results, it has been observed that more information has achieved on edges and content visibility is also high as compared to the other techniques which makes it more suitable for real applications. The experimental results are evaluated on the basis of with-reference and without-references metric such as standard deviation, entropy, peak signal to noise ratio, mutual information etc.