{"title":"规范平面上的一些聚类算法","authors":"Pedro Martín , Diego Yáñez","doi":"10.1016/j.endm.2018.06.033","DOIUrl":null,"url":null,"abstract":"<div><p>Given two sets of points <em>A</em> and <em>B</em> in a normed plane, we prove that there are two linearly separable sets <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that <span><math><mrow><mi>diam</mi></mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>≤</mo><mrow><mi>diam</mi></mrow><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mrow><mi>diam</mi></mrow><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>≤</mo><mrow><mi>diam</mi></mrow><mo>(</mo><mi>B</mi><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∪</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>A</mi><mo>∪</mo><mi>B</mi></math></span>. As a result, some Euclidean clustering algorithms are adapted to normed planes, for instance, those that minimize the maximum, the sum, or the sum of squares of the diameters (or the radii) of <em>k</em> clusters. Some specific solutions are presented for <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span> that minimize the diameter of the clusters. The 2-clustering problem when two different bounds are imposed to the diameters is also studied.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.033","citationCount":"0","resultStr":"{\"title\":\"Some clustering algorithms in normed planes\",\"authors\":\"Pedro Martín , Diego Yáñez\",\"doi\":\"10.1016/j.endm.2018.06.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given two sets of points <em>A</em> and <em>B</em> in a normed plane, we prove that there are two linearly separable sets <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> such that <span><math><mrow><mi>diam</mi></mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>≤</mo><mrow><mi>diam</mi></mrow><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mrow><mi>diam</mi></mrow><mo>(</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>≤</mo><mrow><mi>diam</mi></mrow><mo>(</mo><mi>B</mi><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∪</mo><msup><mrow><mi>B</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mi>A</mi><mo>∪</mo><mi>B</mi></math></span>. As a result, some Euclidean clustering algorithms are adapted to normed planes, for instance, those that minimize the maximum, the sum, or the sum of squares of the diameters (or the radii) of <em>k</em> clusters. Some specific solutions are presented for <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span> that minimize the diameter of the clusters. The 2-clustering problem when two different bounds are imposed to the diameters is also studied.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.033\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Given two sets of points A and B in a normed plane, we prove that there are two linearly separable sets and such that , and . As a result, some Euclidean clustering algorithms are adapted to normed planes, for instance, those that minimize the maximum, the sum, or the sum of squares of the diameters (or the radii) of k clusters. Some specific solutions are presented for and that minimize the diameter of the clusters. The 2-clustering problem when two different bounds are imposed to the diameters is also studied.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.