用遗传规划和基于语义的交叉预测潮流

Nguyen Quang Uy, M. O’Neill, N. X. Hoai
{"title":"用遗传规划和基于语义的交叉预测潮流","authors":"Nguyen Quang Uy, M. O’Neill, N. X. Hoai","doi":"10.1109/KSE.2010.7","DOIUrl":null,"url":null,"abstract":"This paper proposes an improvement of a recently proposed semantic-based crossover, Semantic Similarity-based Crossover (SSC). The new crossover, called the Most Semantic Similarity-based Crossover (MSSC), is tested with Genetic Programming (GP) on a real world problem, as in predicting the tide in Venice Lagoon, Italy. The results are compared with GP using Standard Crossover (SC) and GP using validation sets. The comparative results show that while using validation sets give only limited effect, using semantic-based crossovers, especially MSSC, remarkably improve the ability of GP to predict time series for the tested problem. Further analysis on GP code bloat helps to explain the reason behind this superiority of MSSC.","PeriodicalId":158823,"journal":{"name":"2010 Second International Conference on Knowledge and Systems Engineering","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting the Tide with Genetic Programming and Semantic-based Crossovers\",\"authors\":\"Nguyen Quang Uy, M. O’Neill, N. X. Hoai\",\"doi\":\"10.1109/KSE.2010.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improvement of a recently proposed semantic-based crossover, Semantic Similarity-based Crossover (SSC). The new crossover, called the Most Semantic Similarity-based Crossover (MSSC), is tested with Genetic Programming (GP) on a real world problem, as in predicting the tide in Venice Lagoon, Italy. The results are compared with GP using Standard Crossover (SC) and GP using validation sets. The comparative results show that while using validation sets give only limited effect, using semantic-based crossovers, especially MSSC, remarkably improve the ability of GP to predict time series for the tested problem. Further analysis on GP code bloat helps to explain the reason behind this superiority of MSSC.\",\"PeriodicalId\":158823,\"journal\":{\"name\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2010.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2010.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文对最近提出的基于语义的跨界算法进行了改进,即基于语义相似度的跨界算法。这种新的跨界算法被称为基于最语义相似度的跨界算法(MSSC),它在一个现实世界的问题上用遗传编程(GP)进行了测试,比如预测意大利威尼斯泻湖的潮汐。结果与使用标准交叉(SC)的GP和使用验证集的GP进行了比较。对比结果表明,虽然使用验证集的效果有限,但使用基于语义的交叉,特别是MSSC,显著提高了GP对测试问题时间序列的预测能力。对GP代码膨胀的进一步分析有助于解释MSSC这种优势背后的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Tide with Genetic Programming and Semantic-based Crossovers
This paper proposes an improvement of a recently proposed semantic-based crossover, Semantic Similarity-based Crossover (SSC). The new crossover, called the Most Semantic Similarity-based Crossover (MSSC), is tested with Genetic Programming (GP) on a real world problem, as in predicting the tide in Venice Lagoon, Italy. The results are compared with GP using Standard Crossover (SC) and GP using validation sets. The comparative results show that while using validation sets give only limited effect, using semantic-based crossovers, especially MSSC, remarkably improve the ability of GP to predict time series for the tested problem. Further analysis on GP code bloat helps to explain the reason behind this superiority of MSSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信