{"title":"定量语义中的不动点","authors":"J. Laird","doi":"10.1145/2933575.2934569","DOIUrl":null,"url":null,"abstract":"We describe an interpretation of recursive computation in a symmetric monoidal category with infinite biproducts and cofree commutative comonoids (for instance, the category of free modules over a complete semiring). Such categories play a significant role in \"quantitative\" models of computation: they bear a canonical complete monoid enrichment, but may not be cpo-enriched, making standard techniques for reasoning about fixed points unavailable. By constructing a bifree algebra for the cofree exponential, we obtain fixed points for morphisms in its co-Kleisli category without requiring any order-theoretic structure. These fixed points corresponding to infinite sums of finitary approximants indexed over the nested finite multisets, each representing a unique call-pattern for computation of the fixed point. We illustrate this construction by using it to give a denotational semantics for PCF with non-deterministic choice and scalar weights from a complete semiring, proving that this is computationally adequate with respect to an operational semantics which evaluates a term by taking a weighted sum of the residues of its terminating reduction paths.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fixed Points In Quantitative Semantics\",\"authors\":\"J. Laird\",\"doi\":\"10.1145/2933575.2934569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an interpretation of recursive computation in a symmetric monoidal category with infinite biproducts and cofree commutative comonoids (for instance, the category of free modules over a complete semiring). Such categories play a significant role in \\\"quantitative\\\" models of computation: they bear a canonical complete monoid enrichment, but may not be cpo-enriched, making standard techniques for reasoning about fixed points unavailable. By constructing a bifree algebra for the cofree exponential, we obtain fixed points for morphisms in its co-Kleisli category without requiring any order-theoretic structure. These fixed points corresponding to infinite sums of finitary approximants indexed over the nested finite multisets, each representing a unique call-pattern for computation of the fixed point. We illustrate this construction by using it to give a denotational semantics for PCF with non-deterministic choice and scalar weights from a complete semiring, proving that this is computationally adequate with respect to an operational semantics which evaluates a term by taking a weighted sum of the residues of its terminating reduction paths.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2934569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2934569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe an interpretation of recursive computation in a symmetric monoidal category with infinite biproducts and cofree commutative comonoids (for instance, the category of free modules over a complete semiring). Such categories play a significant role in "quantitative" models of computation: they bear a canonical complete monoid enrichment, but may not be cpo-enriched, making standard techniques for reasoning about fixed points unavailable. By constructing a bifree algebra for the cofree exponential, we obtain fixed points for morphisms in its co-Kleisli category without requiring any order-theoretic structure. These fixed points corresponding to infinite sums of finitary approximants indexed over the nested finite multisets, each representing a unique call-pattern for computation of the fixed point. We illustrate this construction by using it to give a denotational semantics for PCF with non-deterministic choice and scalar weights from a complete semiring, proving that this is computationally adequate with respect to an operational semantics which evaluates a term by taking a weighted sum of the residues of its terminating reduction paths.