真实世界图上快速可扩展的分布式环路信念传播

Saehan Jo, Jaemin Yoo, U. Kang
{"title":"真实世界图上快速可扩展的分布式环路信念传播","authors":"Saehan Jo, Jaemin Yoo, U. Kang","doi":"10.1145/3159652.3159722","DOIUrl":null,"url":null,"abstract":"Given graphs with millions or billions of vertices and edges, how can we efficiently make inferences based on partial knowledge? Loopy Belief Propagation(LBP) is a graph inference algorithm widely used in various applications including social network analysis, malware detection, recommendation, and image restoration. The algorithm calculates approximate marginal probabilities of vertices in a graph within a linear running time proportional to the number of edges. However, when it comes to real-world graphs with millions or billions of vertices and edges, this cost overwhelms the computing power of a single machine. Moreover, this kind of large-scale graphs does not fit into the memory of a single machine. Although several distributed LBP methods have been proposed, previous works do not consider the properties of real-world graphs, especially the effect of power-law degree distribution on LBP. Therefore, our work focuses on developing a fast and scalable LBP for such large real-world graphs on distributed environment. In this paper, we propose DLBP, a Distributed Loopy Belief Propagation algorithm which efficiently computes LBP in a distributed manner across multiple machines. By setting the correct convergence criterion and carefully scheduling the computations, DLBP provides up to 10.7x speed up compared to standard distributed LBP. We show that DLBP demonstrates near-linear scalability with respect to the number of machines as well as the number of edges.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fast and Scalable Distributed Loopy Belief Propagation on Real-World Graphs\",\"authors\":\"Saehan Jo, Jaemin Yoo, U. Kang\",\"doi\":\"10.1145/3159652.3159722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given graphs with millions or billions of vertices and edges, how can we efficiently make inferences based on partial knowledge? Loopy Belief Propagation(LBP) is a graph inference algorithm widely used in various applications including social network analysis, malware detection, recommendation, and image restoration. The algorithm calculates approximate marginal probabilities of vertices in a graph within a linear running time proportional to the number of edges. However, when it comes to real-world graphs with millions or billions of vertices and edges, this cost overwhelms the computing power of a single machine. Moreover, this kind of large-scale graphs does not fit into the memory of a single machine. Although several distributed LBP methods have been proposed, previous works do not consider the properties of real-world graphs, especially the effect of power-law degree distribution on LBP. Therefore, our work focuses on developing a fast and scalable LBP for such large real-world graphs on distributed environment. In this paper, we propose DLBP, a Distributed Loopy Belief Propagation algorithm which efficiently computes LBP in a distributed manner across multiple machines. By setting the correct convergence criterion and carefully scheduling the computations, DLBP provides up to 10.7x speed up compared to standard distributed LBP. We show that DLBP demonstrates near-linear scalability with respect to the number of machines as well as the number of edges.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3159722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

给定具有数百万或数十亿个顶点和边的图,我们如何基于部分知识有效地进行推理?LBP (Loopy Belief Propagation)是一种图推理算法,广泛应用于社交网络分析、恶意软件检测、推荐和图像恢复等领域。该算法在与边数成正比的线性运行时间内计算图中顶点的近似边际概率。然而,当涉及到具有数百万或数十亿个顶点和边的现实世界图时,这个成本超过了单个机器的计算能力。此外,这种大规模的图形不适合单个机器的内存。虽然已经提出了几种分布式LBP方法,但以前的工作没有考虑到真实图的性质,特别是幂律度分布对LBP的影响。因此,我们的工作重点是为分布式环境下的大型现实世界图开发一个快速且可扩展的LBP。本文提出了一种分布式循环信念传播算法DLBP,它可以在多台机器上以分布式的方式有效地计算LBP。通过设置正确的收敛准则和仔细的调度计算,DLBP比标准的分布式LBP提供了高达10.7倍的速度。我们证明了DLBP在机器数量和边数量方面具有近似线性的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Scalable Distributed Loopy Belief Propagation on Real-World Graphs
Given graphs with millions or billions of vertices and edges, how can we efficiently make inferences based on partial knowledge? Loopy Belief Propagation(LBP) is a graph inference algorithm widely used in various applications including social network analysis, malware detection, recommendation, and image restoration. The algorithm calculates approximate marginal probabilities of vertices in a graph within a linear running time proportional to the number of edges. However, when it comes to real-world graphs with millions or billions of vertices and edges, this cost overwhelms the computing power of a single machine. Moreover, this kind of large-scale graphs does not fit into the memory of a single machine. Although several distributed LBP methods have been proposed, previous works do not consider the properties of real-world graphs, especially the effect of power-law degree distribution on LBP. Therefore, our work focuses on developing a fast and scalable LBP for such large real-world graphs on distributed environment. In this paper, we propose DLBP, a Distributed Loopy Belief Propagation algorithm which efficiently computes LBP in a distributed manner across multiple machines. By setting the correct convergence criterion and carefully scheduling the computations, DLBP provides up to 10.7x speed up compared to standard distributed LBP. We show that DLBP demonstrates near-linear scalability with respect to the number of machines as well as the number of edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信