子样本稳定图模式的高效挖掘

A. Buzmakov, S. Kuznetsov, A. Napoli
{"title":"子样本稳定图模式的高效挖掘","authors":"A. Buzmakov, S. Kuznetsov, A. Napoli","doi":"10.1109/ICDM.2017.88","DOIUrl":null,"url":null,"abstract":"A scalable method for mining graph patterns stable under subsampling is proposed. The existing subsample stability and robustness measures are not antimonotonic according to definitions known so far. We study a broader notion of antimonotonicity for graph patterns, so that measures of subsample stability become antimonotonic. Then we propose gSOFIA for mining the most subsample-stable graph patterns. The experiments on numerous graph datasets show that gSOFIA is very efficient for discovering subsample-stable graph patterns.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Mining of Subsample-Stable Graph Patterns\",\"authors\":\"A. Buzmakov, S. Kuznetsov, A. Napoli\",\"doi\":\"10.1109/ICDM.2017.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A scalable method for mining graph patterns stable under subsampling is proposed. The existing subsample stability and robustness measures are not antimonotonic according to definitions known so far. We study a broader notion of antimonotonicity for graph patterns, so that measures of subsample stability become antimonotonic. Then we propose gSOFIA for mining the most subsample-stable graph patterns. The experiments on numerous graph datasets show that gSOFIA is very efficient for discovering subsample-stable graph patterns.\",\"PeriodicalId\":254086,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2017.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种可扩展的挖掘在次抽样下稳定的图模式的方法。根据目前已知的定义,现有的子样本稳定性和鲁棒性度量不是反单调的。我们研究了图模式反单调性的一个更广泛的概念,使得子样本稳定性的度量成为反单调的。然后,我们提出了用于挖掘最子样本稳定的图模式的gSOFIA。在大量图数据集上的实验表明,gSOFIA对于发现子样本稳定的图模式是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Mining of Subsample-Stable Graph Patterns
A scalable method for mining graph patterns stable under subsampling is proposed. The existing subsample stability and robustness measures are not antimonotonic according to definitions known so far. We study a broader notion of antimonotonicity for graph patterns, so that measures of subsample stability become antimonotonic. Then we propose gSOFIA for mining the most subsample-stable graph patterns. The experiments on numerous graph datasets show that gSOFIA is very efficient for discovering subsample-stable graph patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信