关于有唯一解的递归方程

B. Courcelle
{"title":"关于有唯一解的递归方程","authors":"B. Courcelle","doi":"10.1109/SFCS.1978.26","DOIUrl":null,"url":null,"abstract":"We give conditions on a left-linear Church-Rosser term rewriting system S allowing to define S-normal forms for infinite terms. We obtain a characterization of the S-equivalence of recursive program schemes (i.e. equivalence in all interpretations which validate S considered as a set of axioms). We give sufficient conditions for a recursive program scheme Σ to be S-univocal i.e. to have only one solution up to S-equivalence (considering Σ as a system of equations). For such schemes, we obtain proofs of S-equivalence which do not use any \"induction principle\". We also consider (SUE)-equivalence where S satisfies the above conditions and E is a set of bilinear equations such that no E-normal form does exist.","PeriodicalId":346837,"journal":{"name":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"on recursive equations having a unique solution\",\"authors\":\"B. Courcelle\",\"doi\":\"10.1109/SFCS.1978.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give conditions on a left-linear Church-Rosser term rewriting system S allowing to define S-normal forms for infinite terms. We obtain a characterization of the S-equivalence of recursive program schemes (i.e. equivalence in all interpretations which validate S considered as a set of axioms). We give sufficient conditions for a recursive program scheme Σ to be S-univocal i.e. to have only one solution up to S-equivalence (considering Σ as a system of equations). For such schemes, we obtain proofs of S-equivalence which do not use any \\\"induction principle\\\". We also consider (SUE)-equivalence where S satisfies the above conditions and E is a set of bilinear equations such that no E-normal form does exist.\",\"PeriodicalId\":346837,\"journal\":{\"name\":\"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1978.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1978.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

给出了左线性Church-Rosser项重写系统S上允许定义无限项S范式的条件。我们得到了递归规划方案的S等价的一个表征(即在所有证明S作为一组公理的解释中的等价)。我们给出了递归规划方案Σ是s -唯一的充分条件,即只有一个解达到s等价(考虑Σ是一个方程组)。对于这类方案,我们得到了不使用任何“归纳法原理”的s等价证明。我们还考虑(SUE)-等价,其中S满足上述条件,并且E是一组双线性方程,使得不存在E-范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
on recursive equations having a unique solution
We give conditions on a left-linear Church-Rosser term rewriting system S allowing to define S-normal forms for infinite terms. We obtain a characterization of the S-equivalence of recursive program schemes (i.e. equivalence in all interpretations which validate S considered as a set of axioms). We give sufficient conditions for a recursive program scheme Σ to be S-univocal i.e. to have only one solution up to S-equivalence (considering Σ as a system of equations). For such schemes, we obtain proofs of S-equivalence which do not use any "induction principle". We also consider (SUE)-equivalence where S satisfies the above conditions and E is a set of bilinear equations such that no E-normal form does exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信