{"title":"关于有唯一解的递归方程","authors":"B. Courcelle","doi":"10.1109/SFCS.1978.26","DOIUrl":null,"url":null,"abstract":"We give conditions on a left-linear Church-Rosser term rewriting system S allowing to define S-normal forms for infinite terms. We obtain a characterization of the S-equivalence of recursive program schemes (i.e. equivalence in all interpretations which validate S considered as a set of axioms). We give sufficient conditions for a recursive program scheme Σ to be S-univocal i.e. to have only one solution up to S-equivalence (considering Σ as a system of equations). For such schemes, we obtain proofs of S-equivalence which do not use any \"induction principle\". We also consider (SUE)-equivalence where S satisfies the above conditions and E is a set of bilinear equations such that no E-normal form does exist.","PeriodicalId":346837,"journal":{"name":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"on recursive equations having a unique solution\",\"authors\":\"B. Courcelle\",\"doi\":\"10.1109/SFCS.1978.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give conditions on a left-linear Church-Rosser term rewriting system S allowing to define S-normal forms for infinite terms. We obtain a characterization of the S-equivalence of recursive program schemes (i.e. equivalence in all interpretations which validate S considered as a set of axioms). We give sufficient conditions for a recursive program scheme Σ to be S-univocal i.e. to have only one solution up to S-equivalence (considering Σ as a system of equations). For such schemes, we obtain proofs of S-equivalence which do not use any \\\"induction principle\\\". We also consider (SUE)-equivalence where S satisfies the above conditions and E is a set of bilinear equations such that no E-normal form does exist.\",\"PeriodicalId\":346837,\"journal\":{\"name\":\"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1978.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th Annual Symposium on Foundations of Computer Science (sfcs 1978)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1978.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We give conditions on a left-linear Church-Rosser term rewriting system S allowing to define S-normal forms for infinite terms. We obtain a characterization of the S-equivalence of recursive program schemes (i.e. equivalence in all interpretations which validate S considered as a set of axioms). We give sufficient conditions for a recursive program scheme Σ to be S-univocal i.e. to have only one solution up to S-equivalence (considering Σ as a system of equations). For such schemes, we obtain proofs of S-equivalence which do not use any "induction principle". We also consider (SUE)-equivalence where S satisfies the above conditions and E is a set of bilinear equations such that no E-normal form does exist.