基于cso的支持向量机特征选择与参数优化

Kuan-Cheng Lin, Hsu-Yu Chien
{"title":"基于cso的支持向量机特征选择与参数优化","authors":"Kuan-Cheng Lin, Hsu-Yu Chien","doi":"10.1109/JCPC.2009.5420080","DOIUrl":null,"url":null,"abstract":"This research constructs the CSO+SVM model for data classification through integrating cat swam optimization into SVM classifier. There are two factors (i.e. feature selection and parameter determination) of classification problems will mainly discuss in this study. The objectives of feature selection are to reduce number of features and remove irrelevant, noisy and redundant data. Besides, the parameter optimization for training can improve classification performance. Hence, the optimal feature subset and kernel parameter are applied to SVM classifier for reducing the computational time in an acceptable classification accuracy. Furthermore, the classification accuracy is increased. The different classes and types in UCI machine learning repository is used to evaluate the classification accuracy of the proposed CSO+SVM and GA+SVM methods.. Experimental results show the effectiveness of the proposed CSO+SVM method for solving data classification problems.","PeriodicalId":284323,"journal":{"name":"2009 Joint Conferences on Pervasive Computing (JCPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"CSO-based feature selection and parameter optimization for support vector machine\",\"authors\":\"Kuan-Cheng Lin, Hsu-Yu Chien\",\"doi\":\"10.1109/JCPC.2009.5420080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research constructs the CSO+SVM model for data classification through integrating cat swam optimization into SVM classifier. There are two factors (i.e. feature selection and parameter determination) of classification problems will mainly discuss in this study. The objectives of feature selection are to reduce number of features and remove irrelevant, noisy and redundant data. Besides, the parameter optimization for training can improve classification performance. Hence, the optimal feature subset and kernel parameter are applied to SVM classifier for reducing the computational time in an acceptable classification accuracy. Furthermore, the classification accuracy is increased. The different classes and types in UCI machine learning repository is used to evaluate the classification accuracy of the proposed CSO+SVM and GA+SVM methods.. Experimental results show the effectiveness of the proposed CSO+SVM method for solving data classification problems.\",\"PeriodicalId\":284323,\"journal\":{\"name\":\"2009 Joint Conferences on Pervasive Computing (JCPC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Joint Conferences on Pervasive Computing (JCPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCPC.2009.5420080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Conferences on Pervasive Computing (JCPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCPC.2009.5420080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本研究通过将cat游动优化算法集成到SVM分类器中,构建CSO+SVM模型进行数据分类。本研究将主要讨论两个因素(即特征选择和参数确定)的分类问题。特征选择的目标是减少特征的数量,去除不相关、有噪声和冗余的数据。此外,训练参数优化可以提高分类性能。因此,将最优的特征子集和核参数应用于SVM分类器,在可接受的分类精度下减少计算时间。进一步提高了分类精度。利用UCI机器学习存储库中不同的类和类型来评估所提出的CSO+SVM和GA+SVM方法的分类精度。实验结果表明,本文提出的CSO+SVM方法能够有效地解决数据分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CSO-based feature selection and parameter optimization for support vector machine
This research constructs the CSO+SVM model for data classification through integrating cat swam optimization into SVM classifier. There are two factors (i.e. feature selection and parameter determination) of classification problems will mainly discuss in this study. The objectives of feature selection are to reduce number of features and remove irrelevant, noisy and redundant data. Besides, the parameter optimization for training can improve classification performance. Hence, the optimal feature subset and kernel parameter are applied to SVM classifier for reducing the computational time in an acceptable classification accuracy. Furthermore, the classification accuracy is increased. The different classes and types in UCI machine learning repository is used to evaluate the classification accuracy of the proposed CSO+SVM and GA+SVM methods.. Experimental results show the effectiveness of the proposed CSO+SVM method for solving data classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信