H. Schwab, U. Heinemann, A. Beck, H. Ebert, J. Fricke
{"title":"气相硅核真空绝热板导热系数与含水量的关系","authors":"H. Schwab, U. Heinemann, A. Beck, H. Ebert, J. Fricke","doi":"10.1177/1097196305051792","DOIUrl":null,"url":null,"abstract":"The influence of moisture in vacuum insulation panels (VIPs), with fumed silica kernels, on their thermal conductivity has been investigated. The VIPs are produced with different water contents. The thermal conductivities at different water contents are measured under stationary conditions in a hot-plate apparatus with an average temperature of 10°C (plate temperatures are 0 and 20°C). The increase in thermal conductivity is approximately proportional to the water content. The increase is ≈0.5 × 10 -3 W/(m K) per mass% of water. For typical middle European climate, a maximum moisture content of ≈6 mass% can be expected, which corresponds to a maximum increase of thermal conductivity of ≈3 × 10 -3 W/(m K) for VIPs with fumed silica kernels.","PeriodicalId":435154,"journal":{"name":"Journal of Thermal Envelope and Building Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Dependence of Thermal Conductivity on Water Content in Vacuum Insulation Panels with Fumed Silica Kernels\",\"authors\":\"H. Schwab, U. Heinemann, A. Beck, H. Ebert, J. Fricke\",\"doi\":\"10.1177/1097196305051792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of moisture in vacuum insulation panels (VIPs), with fumed silica kernels, on their thermal conductivity has been investigated. The VIPs are produced with different water contents. The thermal conductivities at different water contents are measured under stationary conditions in a hot-plate apparatus with an average temperature of 10°C (plate temperatures are 0 and 20°C). The increase in thermal conductivity is approximately proportional to the water content. The increase is ≈0.5 × 10 -3 W/(m K) per mass% of water. For typical middle European climate, a maximum moisture content of ≈6 mass% can be expected, which corresponds to a maximum increase of thermal conductivity of ≈3 × 10 -3 W/(m K) for VIPs with fumed silica kernels.\",\"PeriodicalId\":435154,\"journal\":{\"name\":\"Journal of Thermal Envelope and Building Science\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Envelope and Building Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1097196305051792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Envelope and Building Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1097196305051792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dependence of Thermal Conductivity on Water Content in Vacuum Insulation Panels with Fumed Silica Kernels
The influence of moisture in vacuum insulation panels (VIPs), with fumed silica kernels, on their thermal conductivity has been investigated. The VIPs are produced with different water contents. The thermal conductivities at different water contents are measured under stationary conditions in a hot-plate apparatus with an average temperature of 10°C (plate temperatures are 0 and 20°C). The increase in thermal conductivity is approximately proportional to the water content. The increase is ≈0.5 × 10 -3 W/(m K) per mass% of water. For typical middle European climate, a maximum moisture content of ≈6 mass% can be expected, which corresponds to a maximum increase of thermal conductivity of ≈3 × 10 -3 W/(m K) for VIPs with fumed silica kernels.