纵向翅片管外强化传热性能的数值研究

Yujia Zhou, H. Bo, Jingyu Du
{"title":"纵向翅片管外强化传热性能的数值研究","authors":"Yujia Zhou, H. Bo, Jingyu Du","doi":"10.1115/ICONE26-81283","DOIUrl":null,"url":null,"abstract":"With the purpose of enhancement of heat transfer performance and reduction of the volume of steam generator (SG), a structure of longitudinal finned tubes was proposed to replace the smooth tubes of SG in this paper. Taking the SG smooth tubes of Daya bay Nuclear Power plant as a reference, the simplified heat transfer model of new longitudinal finned tubes was established by ANSYS CFX. Three-dimensional numerical model was developed to investigate the fluid-solid coupled thermal hydraulic characteristics of different types of the longitudinal finned tubes compared with the smooth tubes. Analysis of calculation results were sufficiently discussed for the effect of mass flow rate, fin array, solid thermal conductivity and frictional resistance. The numerical results revealed that the heat transfer coefficient increase with the increasing mass flow rate in the secondary side. The material of the tubes has significantly influence on the heat transfer process. Different flow conditions have different thermal hydraulic characteristics. The evaluated criterion to judge the enhancement of the heat transfer of the coupled process was also proposed. The numerical results can provide some useful guidance for design optimization of longitudinal finned tubes in SG.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation on the Heat Transfer Enhancement Behavior Outside Longitudinal Finned Tubes\",\"authors\":\"Yujia Zhou, H. Bo, Jingyu Du\",\"doi\":\"10.1115/ICONE26-81283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the purpose of enhancement of heat transfer performance and reduction of the volume of steam generator (SG), a structure of longitudinal finned tubes was proposed to replace the smooth tubes of SG in this paper. Taking the SG smooth tubes of Daya bay Nuclear Power plant as a reference, the simplified heat transfer model of new longitudinal finned tubes was established by ANSYS CFX. Three-dimensional numerical model was developed to investigate the fluid-solid coupled thermal hydraulic characteristics of different types of the longitudinal finned tubes compared with the smooth tubes. Analysis of calculation results were sufficiently discussed for the effect of mass flow rate, fin array, solid thermal conductivity and frictional resistance. The numerical results revealed that the heat transfer coefficient increase with the increasing mass flow rate in the secondary side. The material of the tubes has significantly influence on the heat transfer process. Different flow conditions have different thermal hydraulic characteristics. The evaluated criterion to judge the enhancement of the heat transfer of the coupled process was also proposed. The numerical results can provide some useful guidance for design optimization of longitudinal finned tubes in SG.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高蒸汽发生器的传热性能,减小蒸汽发生器的体积,本文提出了一种纵向翅片管结构来代替蒸汽发生器的光滑管结构。以大亚湾核电站SG光滑管为参考,利用ANSYS CFX建立了新型纵向翅片管的简化传热模型。建立了三维数值模型,研究了不同类型纵翅片管与光滑管的流固耦合热水力特性。对计算结果进行了分析,充分讨论了质量流量、翅片阵列、固体导热系数和摩擦阻力等因素对计算结果的影响。数值计算结果表明,随着二次侧质量流量的增大,换热系数增大。管的材质对传热过程有显著的影响。不同的流动条件具有不同的热水力特性。提出了耦合过程强化传热的评价准则。数值结果可为SG纵向翅片管的优化设计提供有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation on the Heat Transfer Enhancement Behavior Outside Longitudinal Finned Tubes
With the purpose of enhancement of heat transfer performance and reduction of the volume of steam generator (SG), a structure of longitudinal finned tubes was proposed to replace the smooth tubes of SG in this paper. Taking the SG smooth tubes of Daya bay Nuclear Power plant as a reference, the simplified heat transfer model of new longitudinal finned tubes was established by ANSYS CFX. Three-dimensional numerical model was developed to investigate the fluid-solid coupled thermal hydraulic characteristics of different types of the longitudinal finned tubes compared with the smooth tubes. Analysis of calculation results were sufficiently discussed for the effect of mass flow rate, fin array, solid thermal conductivity and frictional resistance. The numerical results revealed that the heat transfer coefficient increase with the increasing mass flow rate in the secondary side. The material of the tubes has significantly influence on the heat transfer process. Different flow conditions have different thermal hydraulic characteristics. The evaluated criterion to judge the enhancement of the heat transfer of the coupled process was also proposed. The numerical results can provide some useful guidance for design optimization of longitudinal finned tubes in SG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信