马尔可夫骨架过程在传染病管理模型中的应用

Yongwei Zhou, Ziqiang Li
{"title":"马尔可夫骨架过程在传染病管理模型中的应用","authors":"Yongwei Zhou, Ziqiang Li","doi":"10.1109/AIMSEC.2011.6010975","DOIUrl":null,"url":null,"abstract":"This paper is devoted to studying the infectious disease management model by using the theory of Markov skeleton process by Zhengting Hou etc, and draw the conclusion that the number of infection at any time in the future is a minimum nonnegative solution of a nonnegative linear equation, so we can forecast the number of infection in an area at any time in the future, a case study has proved the effectiveness of the method.","PeriodicalId":214011,"journal":{"name":"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The application of Markov skeleton process on the infectious disease management model\",\"authors\":\"Yongwei Zhou, Ziqiang Li\",\"doi\":\"10.1109/AIMSEC.2011.6010975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to studying the infectious disease management model by using the theory of Markov skeleton process by Zhengting Hou etc, and draw the conclusion that the number of infection at any time in the future is a minimum nonnegative solution of a nonnegative linear equation, so we can forecast the number of infection in an area at any time in the future, a case study has proved the effectiveness of the method.\",\"PeriodicalId\":214011,\"journal\":{\"name\":\"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMSEC.2011.6010975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMSEC.2011.6010975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用侯正廷等人的马尔可夫骨架过程理论对传染病管理模型进行了研究,得出了未来任何时刻的感染人数是一个非负线性方程的最小非负解的结论,从而可以预测未来任何时刻某一地区的感染人数,实例研究证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of Markov skeleton process on the infectious disease management model
This paper is devoted to studying the infectious disease management model by using the theory of Markov skeleton process by Zhengting Hou etc, and draw the conclusion that the number of infection at any time in the future is a minimum nonnegative solution of a nonnegative linear equation, so we can forecast the number of infection in an area at any time in the future, a case study has proved the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信