基于ParAdapt和CUDA的多变量集成的可扩展算法

O. Olagbemi, E. de Doncker
{"title":"基于ParAdapt和CUDA的多变量集成的可扩展算法","authors":"O. Olagbemi, E. de Doncker","doi":"10.1109/CSCI49370.2019.00093","DOIUrl":null,"url":null,"abstract":"ParAdapt is a numerical integration software based on a classic global adaptive algorithm, which employs GPUs in providing integral evaluations. Based on adaptive region partitioning strategies developed for efficient integration and mapping to GPUs, ParAdapt renders the framework of the global adaptive scheme suitable for general functions in moderate dimensions, say 10 to 25. Speedup values achieved are in the double and triple digits up to very large numbers of subdivisions. While sequential adaptive strategies are generally considered effective for integral dimensions through about 10 or 12, it is our goal to move this threshold up considerably.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable Algorithms for Multivariate Integration with ParAdapt and CUDA\",\"authors\":\"O. Olagbemi, E. de Doncker\",\"doi\":\"10.1109/CSCI49370.2019.00093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ParAdapt is a numerical integration software based on a classic global adaptive algorithm, which employs GPUs in providing integral evaluations. Based on adaptive region partitioning strategies developed for efficient integration and mapping to GPUs, ParAdapt renders the framework of the global adaptive scheme suitable for general functions in moderate dimensions, say 10 to 25. Speedup values achieved are in the double and triple digits up to very large numbers of subdivisions. While sequential adaptive strategies are generally considered effective for integral dimensions through about 10 or 12, it is our goal to move this threshold up considerably.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

ParAdapt是一款基于经典全局自适应算法的数值积分软件,采用gpu提供积分计算。ParAdapt基于为高效集成和映射到gpu而开发的自适应区域划分策略,使全局自适应方案的框架适用于中等维度(例如10到25)的一般功能。在非常大的细分范围内,实现的加速值为两位数和三位数。虽然顺序自适应策略通常被认为对10或12个整体维度有效,但我们的目标是将这个阈值大幅提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Algorithms for Multivariate Integration with ParAdapt and CUDA
ParAdapt is a numerical integration software based on a classic global adaptive algorithm, which employs GPUs in providing integral evaluations. Based on adaptive region partitioning strategies developed for efficient integration and mapping to GPUs, ParAdapt renders the framework of the global adaptive scheme suitable for general functions in moderate dimensions, say 10 to 25. Speedup values achieved are in the double and triple digits up to very large numbers of subdivisions. While sequential adaptive strategies are generally considered effective for integral dimensions through about 10 or 12, it is our goal to move this threshold up considerably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信