TriopusNet:自动化无线传感器网络部署和替换管道监测

Tsung-Te Lai, Wei-Ju Chen, Kuei-Han Li, Polly Huang, Hao-Hua Chu
{"title":"TriopusNet:自动化无线传感器网络部署和替换管道监测","authors":"Tsung-Te Lai, Wei-Ju Chen, Kuei-Han Li, Polly Huang, Hao-Hua Chu","doi":"10.1145/2185677.2185686","DOIUrl":null,"url":null,"abstract":"This study presents TriopusNet, a mobile wireless sensor network system for autonomous sensor deployment in pipeline monitoring. TriopusNet works by automatically releasing sensor nodes from a centralized repository located at the source of the water pipeline. During automated deployment, TriopusNet runs a sensor deployment algorithm to determine node placement. While a node is flowing inside the pipeline, it performs placement by extending its mechanical arms to latch itself onto the pipe's inner surface. By continuously releasing nodes into pipes, the TriopusNet system builds a wireless network of interconnected sensor nodes. When a node runs at a low battery level or experiences a fault, the TriopusNet system releases a fresh node from the repository and performs a node replacement algorithm to replace the failed node with the fresh one. We have evaluated the TriopusNet system by creating and collecting real data from an experimental pipeline testbed. Comparing with the nonautomated static deployment, TriopusNet is able to use less sensor nodes to cover a sensing area in the pipes while maintaining network connectivity among nodes with high data collection rate. Experimental results also show that TriopusNet can recover from the network disconnection caused by a battery-depleted node and successfully replace the battery-depleted node with a fresh node.","PeriodicalId":231003,"journal":{"name":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"TriopusNet: Automating wireless sensor network deployment and replacement in pipeline monitoring\",\"authors\":\"Tsung-Te Lai, Wei-Ju Chen, Kuei-Han Li, Polly Huang, Hao-Hua Chu\",\"doi\":\"10.1145/2185677.2185686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents TriopusNet, a mobile wireless sensor network system for autonomous sensor deployment in pipeline monitoring. TriopusNet works by automatically releasing sensor nodes from a centralized repository located at the source of the water pipeline. During automated deployment, TriopusNet runs a sensor deployment algorithm to determine node placement. While a node is flowing inside the pipeline, it performs placement by extending its mechanical arms to latch itself onto the pipe's inner surface. By continuously releasing nodes into pipes, the TriopusNet system builds a wireless network of interconnected sensor nodes. When a node runs at a low battery level or experiences a fault, the TriopusNet system releases a fresh node from the repository and performs a node replacement algorithm to replace the failed node with the fresh one. We have evaluated the TriopusNet system by creating and collecting real data from an experimental pipeline testbed. Comparing with the nonautomated static deployment, TriopusNet is able to use less sensor nodes to cover a sensing area in the pipes while maintaining network connectivity among nodes with high data collection rate. Experimental results also show that TriopusNet can recover from the network disconnection caused by a battery-depleted node and successfully replace the battery-depleted node with a fresh node.\",\"PeriodicalId\":231003,\"journal\":{\"name\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2185677.2185686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185677.2185686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

这项研究提出了TriopusNet,一个移动无线传感器网络系统,用于自主传感器部署在管道监测中。TriopusNet的工作原理是自动从位于水管源头的集中存储库中释放传感器节点。在自动部署过程中,TriopusNet运行传感器部署算法来确定节点的位置。当节点在管道内流动时,它通过伸出机械臂将自己锁在管道的内表面来进行放置。通过不断地将节点释放到管道中,TriopusNet系统建立了一个由相互连接的传感器节点组成的无线网络。当节点电池电量不足或出现故障时,TriopusNet系统会从存储库中释放一个新的节点,并执行节点替换算法,将故障节点替换为新的节点。我们通过创建和收集实验管道测试平台的真实数据,对TriopusNet系统进行了评估。与非自动化静态部署相比,TriopusNet能够使用更少的传感器节点覆盖管道中的传感区域,同时保持节点之间的网络连通性,具有较高的数据采集率。实验结果还表明,TriopusNet可以从电池耗尽导致的网络断开中恢复,并成功地用新节点替换电池耗尽的节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TriopusNet: Automating wireless sensor network deployment and replacement in pipeline monitoring
This study presents TriopusNet, a mobile wireless sensor network system for autonomous sensor deployment in pipeline monitoring. TriopusNet works by automatically releasing sensor nodes from a centralized repository located at the source of the water pipeline. During automated deployment, TriopusNet runs a sensor deployment algorithm to determine node placement. While a node is flowing inside the pipeline, it performs placement by extending its mechanical arms to latch itself onto the pipe's inner surface. By continuously releasing nodes into pipes, the TriopusNet system builds a wireless network of interconnected sensor nodes. When a node runs at a low battery level or experiences a fault, the TriopusNet system releases a fresh node from the repository and performs a node replacement algorithm to replace the failed node with the fresh one. We have evaluated the TriopusNet system by creating and collecting real data from an experimental pipeline testbed. Comparing with the nonautomated static deployment, TriopusNet is able to use less sensor nodes to cover a sensing area in the pipes while maintaining network connectivity among nodes with high data collection rate. Experimental results also show that TriopusNet can recover from the network disconnection caused by a battery-depleted node and successfully replace the battery-depleted node with a fresh node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信