基于esdird的连续离散扩展卡尔曼滤波器的数值鲁棒实现

J. B. Jørgensen, Morten Rode Kristensen, P. G. Thomsen, H. Madsen
{"title":"基于esdird的连续离散扩展卡尔曼滤波器的数值鲁棒实现","authors":"J. B. Jørgensen, Morten Rode Kristensen, P. G. Thomsen, H. Madsen","doi":"10.23919/ECC.2007.7068978","DOIUrl":null,"url":null,"abstract":"We present a novel numerically robust and computationally efficient extended Kalman filter for state estimation in nonlinear continuous-discrete stochastic systems. The resulting differential equations for the mean-covariance evolution of the nonlinear stochastic continuous-discrete time systems are solved efficiently using an ESDIRK integrator with sensitivity analysis capabilities. This ESDIRK integrator for the mean-covariance evolution is implemented as part of an extended Kalman filter and tested on a PDE system. For moderate to large sized systems, the ESDIRK based extended Kalman filter for nonlinear stochastic continuous-discrete time systems is more than two orders of magnitude faster than a conventional implementation. This is of significance in nonlinear model predictive control applications, statistical process monitoring as well as grey-box modelling of systems described by stochastic differential equations.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A numerically robust ESDIRK-based implementation of the continuous-discrete extended Kalman filter\",\"authors\":\"J. B. Jørgensen, Morten Rode Kristensen, P. G. Thomsen, H. Madsen\",\"doi\":\"10.23919/ECC.2007.7068978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel numerically robust and computationally efficient extended Kalman filter for state estimation in nonlinear continuous-discrete stochastic systems. The resulting differential equations for the mean-covariance evolution of the nonlinear stochastic continuous-discrete time systems are solved efficiently using an ESDIRK integrator with sensitivity analysis capabilities. This ESDIRK integrator for the mean-covariance evolution is implemented as part of an extended Kalman filter and tested on a PDE system. For moderate to large sized systems, the ESDIRK based extended Kalman filter for nonlinear stochastic continuous-discrete time systems is more than two orders of magnitude faster than a conventional implementation. This is of significance in nonlinear model predictive control applications, statistical process monitoring as well as grey-box modelling of systems described by stochastic differential equations.\",\"PeriodicalId\":407048,\"journal\":{\"name\":\"2007 European Control Conference (ECC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.2007.7068978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对非线性连续离散随机系统的状态估计问题,提出了一种新的数值鲁棒且计算效率高的扩展卡尔曼滤波器。利用具有灵敏度分析能力的ESDIRK积分器,有效地求解了非线性随机连续离散时间系统均值协方差演化的微分方程。该ESDIRK均值-协方差演化积分器作为扩展卡尔曼滤波器的一部分实现,并在PDE系统上进行了测试。对于中型到大型系统,基于ESDIRK的非线性随机连续离散系统扩展卡尔曼滤波器比传统的实现快两个数量级以上。这在非线性模型预测控制应用、统计过程监测以及随机微分方程描述的系统灰盒建模中具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerically robust ESDIRK-based implementation of the continuous-discrete extended Kalman filter
We present a novel numerically robust and computationally efficient extended Kalman filter for state estimation in nonlinear continuous-discrete stochastic systems. The resulting differential equations for the mean-covariance evolution of the nonlinear stochastic continuous-discrete time systems are solved efficiently using an ESDIRK integrator with sensitivity analysis capabilities. This ESDIRK integrator for the mean-covariance evolution is implemented as part of an extended Kalman filter and tested on a PDE system. For moderate to large sized systems, the ESDIRK based extended Kalman filter for nonlinear stochastic continuous-discrete time systems is more than two orders of magnitude faster than a conventional implementation. This is of significance in nonlinear model predictive control applications, statistical process monitoring as well as grey-box modelling of systems described by stochastic differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信