聚吡咯(PPy)导电聚合物涂覆在干型垂直碳纳米管(pvCNT)电极上,提高其机械稳定性

Mohammad J. Abu-Saude, B. Morshed
{"title":"聚吡咯(PPy)导电聚合物涂覆在干型垂直碳纳米管(pvCNT)电极上,提高其机械稳定性","authors":"Mohammad J. Abu-Saude, B. Morshed","doi":"10.1109/BIOWIRELESS.2016.7445569","DOIUrl":null,"url":null,"abstract":"Traditional wet or gel electrodes are not suitable for long duration neuro-physiological monitoring. Dry electrodes for impedimetric sensing of physiological parameters (such as ECG, EEG, and GSR) promise the ability for long duration monitoring. We have previously demonstrated a novel nanotechnology based dry electrode configuration fabricated with patterned vertically-aligned carbon nanotube (pvCNT) for neuro-physiological impedimetric measurements. However, the fabricated sensors were mechanically weakly adhered to the substrate. This paper describes a coating mechanism of pvCNT with a thin layer of conductive polymer, Polypyrrole (PPy), to increase mechanical stability, while preserving superior impedance properties of pvCNT. The electrodes were fabricated on circular stainless-steel (SS) foil substrate (φ = 10 mm, and thickness = 2 mils). Electrically conductive multi-walled CNT were grown in pattered pillar formation with a square base of 100 μm each side, and an inter-pillar spacing of 200 μm. The heights of the pillars were between 1 to 1.5 mm. The coating procedure involved applying 10 μL of PPy after preparing the pvCNT with 70% ethyl alcohol solution, and flash drying at 300°C. A comparative test with commercial ECG electrodes and non-coated version show that coated pvCNT has lower electrical impedance compared to commercial electrode whereas higher impedance compared to non-coated version. The signal capture were comparable for all electrodes in vitro. The peel test reveal much stronger mechanical adhesion of the pvCNT with the SS substrate when coated with PPy. The results demonstrate the feasibility of coating pvCNT dry electrodes with PPy for robustness.","PeriodicalId":154090,"journal":{"name":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Polypyrrole (PPy) conductive polymer coating of dry patterned vertical CNT (pvCNT) electrode to improve mechanical stability\",\"authors\":\"Mohammad J. Abu-Saude, B. Morshed\",\"doi\":\"10.1109/BIOWIRELESS.2016.7445569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional wet or gel electrodes are not suitable for long duration neuro-physiological monitoring. Dry electrodes for impedimetric sensing of physiological parameters (such as ECG, EEG, and GSR) promise the ability for long duration monitoring. We have previously demonstrated a novel nanotechnology based dry electrode configuration fabricated with patterned vertically-aligned carbon nanotube (pvCNT) for neuro-physiological impedimetric measurements. However, the fabricated sensors were mechanically weakly adhered to the substrate. This paper describes a coating mechanism of pvCNT with a thin layer of conductive polymer, Polypyrrole (PPy), to increase mechanical stability, while preserving superior impedance properties of pvCNT. The electrodes were fabricated on circular stainless-steel (SS) foil substrate (φ = 10 mm, and thickness = 2 mils). Electrically conductive multi-walled CNT were grown in pattered pillar formation with a square base of 100 μm each side, and an inter-pillar spacing of 200 μm. The heights of the pillars were between 1 to 1.5 mm. The coating procedure involved applying 10 μL of PPy after preparing the pvCNT with 70% ethyl alcohol solution, and flash drying at 300°C. A comparative test with commercial ECG electrodes and non-coated version show that coated pvCNT has lower electrical impedance compared to commercial electrode whereas higher impedance compared to non-coated version. The signal capture were comparable for all electrodes in vitro. The peel test reveal much stronger mechanical adhesion of the pvCNT with the SS substrate when coated with PPy. The results demonstrate the feasibility of coating pvCNT dry electrodes with PPy for robustness.\",\"PeriodicalId\":154090,\"journal\":{\"name\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOWIRELESS.2016.7445569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2016.7445569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

传统的湿电极或凝胶电极不适合长时间的神经生理监测。干电极用于生理参数的阻抗传感(如ECG、EEG和GSR),保证了长时间监测的能力。我们之前已经展示了一种新的基于纳米技术的干电极结构,该结构由图案垂直排列的碳纳米管(pvCNT)制成,用于神经生理阻抗测量。然而,制造的传感器机械地弱地粘附在衬底上。本文描述了在导电聚合物聚吡咯(PPy)的薄层上涂覆pvCNT的机理,以提高pvCNT的机械稳定性,同时保持其优越的阻抗性能。电极制作在圆形不锈钢箔(φ = 10 mm,厚度= 2 mils)衬底上。导电多壁碳纳米管生长成每边100 μm的方形基底,柱间距200 μm的图案柱状结构。石柱高度在1 ~ 1.5 mm之间。采用70%乙醇溶液制备pvCNT后,涂覆10 μL聚吡啶,300℃闪蒸干燥。与商业ECG电极和未涂覆版本的比较测试表明,涂覆的pvCNT与商业电极相比具有更低的电阻抗,而与未涂覆的版本相比具有更高的阻抗。信号捕获是可比性的所有电极在体外。剥离试验表明,当涂有聚吡啶时,pvCNT与SS基板的机械附着力要强得多。结果表明,在pvCNT干电极表面涂覆聚吡啶具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polypyrrole (PPy) conductive polymer coating of dry patterned vertical CNT (pvCNT) electrode to improve mechanical stability
Traditional wet or gel electrodes are not suitable for long duration neuro-physiological monitoring. Dry electrodes for impedimetric sensing of physiological parameters (such as ECG, EEG, and GSR) promise the ability for long duration monitoring. We have previously demonstrated a novel nanotechnology based dry electrode configuration fabricated with patterned vertically-aligned carbon nanotube (pvCNT) for neuro-physiological impedimetric measurements. However, the fabricated sensors were mechanically weakly adhered to the substrate. This paper describes a coating mechanism of pvCNT with a thin layer of conductive polymer, Polypyrrole (PPy), to increase mechanical stability, while preserving superior impedance properties of pvCNT. The electrodes were fabricated on circular stainless-steel (SS) foil substrate (φ = 10 mm, and thickness = 2 mils). Electrically conductive multi-walled CNT were grown in pattered pillar formation with a square base of 100 μm each side, and an inter-pillar spacing of 200 μm. The heights of the pillars were between 1 to 1.5 mm. The coating procedure involved applying 10 μL of PPy after preparing the pvCNT with 70% ethyl alcohol solution, and flash drying at 300°C. A comparative test with commercial ECG electrodes and non-coated version show that coated pvCNT has lower electrical impedance compared to commercial electrode whereas higher impedance compared to non-coated version. The signal capture were comparable for all electrodes in vitro. The peel test reveal much stronger mechanical adhesion of the pvCNT with the SS substrate when coated with PPy. The results demonstrate the feasibility of coating pvCNT dry electrodes with PPy for robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信