G. Chantas, N. Galatsanos, R. Molina, A. Katsaggelos
{"title":"变分贝叶斯推理图像恢复使用的产品总变分样图像先验","authors":"G. Chantas, N. Galatsanos, R. Molina, A. Katsaggelos","doi":"10.1109/CIP.2010.5604259","DOIUrl":null,"url":null,"abstract":"In this paper a new image prior is introduced and used in image restoration. This prior is based on products of spatially weighted Total Variations (TV). These spatial weights provide this prior with the flexibility to better capture local image features than previous TV based priors. Bayesian inference is used for image restoration with this prior via the variational approximation. The proposed algorithm is fully automatic in the sense that all necessary parameters are estimated from the data. Numerical experiments are shown which demonstrate that image restoration based on this prior compares favorably with previous state-of-the-art restoration algorithms.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variational Bayesian inference image restoration using a product of total variation-like image priors\",\"authors\":\"G. Chantas, N. Galatsanos, R. Molina, A. Katsaggelos\",\"doi\":\"10.1109/CIP.2010.5604259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new image prior is introduced and used in image restoration. This prior is based on products of spatially weighted Total Variations (TV). These spatial weights provide this prior with the flexibility to better capture local image features than previous TV based priors. Bayesian inference is used for image restoration with this prior via the variational approximation. The proposed algorithm is fully automatic in the sense that all necessary parameters are estimated from the data. Numerical experiments are shown which demonstrate that image restoration based on this prior compares favorably with previous state-of-the-art restoration algorithms.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variational Bayesian inference image restoration using a product of total variation-like image priors
In this paper a new image prior is introduced and used in image restoration. This prior is based on products of spatially weighted Total Variations (TV). These spatial weights provide this prior with the flexibility to better capture local image features than previous TV based priors. Bayesian inference is used for image restoration with this prior via the variational approximation. The proposed algorithm is fully automatic in the sense that all necessary parameters are estimated from the data. Numerical experiments are shown which demonstrate that image restoration based on this prior compares favorably with previous state-of-the-art restoration algorithms.