使用机器学习自动调整MPI运行时参数设置

Simone Pellegrini, T. Fahringer, Herbert Jordan, H. Moritsch
{"title":"使用机器学习自动调整MPI运行时参数设置","authors":"Simone Pellegrini, T. Fahringer, Herbert Jordan, H. Moritsch","doi":"10.1145/1787275.1787310","DOIUrl":null,"url":null,"abstract":"MPI implementations provide several hundred runtime parameters that can be tuned for performance improvement. The ideal parameter setting does not only depend on the target multiprocessor architecture but also on the application, its problem and communicator size. This paper presents ATune, an automatic performance tuning tool that uses machine learning techniques to determine the program-specific optimal settings for a subset of the Open MPI's runtime parameters. ATune learns the behaviour of a target system by means of a training phase where several MPI benchmarks and MPI applications are run on a target architecture for varying problem and communicator sizes. For new input programs, only one run is required in order for ATune to deliver a prediction of the optimal runtime parameters values. Experiments based on the NAS Parallel Benchmarks performed on a cluster of SMP machines are shown that demonstrate the effectiveness of ATune. For these experiments, ATune derives MPI runtime parameter settings that are on average within 4% of the maximum performance achievable on the target system resulting in a performance gain of up to 18% with respect to the default parameter setting.","PeriodicalId":151791,"journal":{"name":"Proceedings of the 7th ACM international conference on Computing frontiers","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic tuning of MPI runtime parameter settings by using machine learning\",\"authors\":\"Simone Pellegrini, T. Fahringer, Herbert Jordan, H. Moritsch\",\"doi\":\"10.1145/1787275.1787310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MPI implementations provide several hundred runtime parameters that can be tuned for performance improvement. The ideal parameter setting does not only depend on the target multiprocessor architecture but also on the application, its problem and communicator size. This paper presents ATune, an automatic performance tuning tool that uses machine learning techniques to determine the program-specific optimal settings for a subset of the Open MPI's runtime parameters. ATune learns the behaviour of a target system by means of a training phase where several MPI benchmarks and MPI applications are run on a target architecture for varying problem and communicator sizes. For new input programs, only one run is required in order for ATune to deliver a prediction of the optimal runtime parameters values. Experiments based on the NAS Parallel Benchmarks performed on a cluster of SMP machines are shown that demonstrate the effectiveness of ATune. For these experiments, ATune derives MPI runtime parameter settings that are on average within 4% of the maximum performance achievable on the target system resulting in a performance gain of up to 18% with respect to the default parameter setting.\",\"PeriodicalId\":151791,\"journal\":{\"name\":\"Proceedings of the 7th ACM international conference on Computing frontiers\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM international conference on Computing frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1787275.1787310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM international conference on Computing frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1787275.1787310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

MPI实现提供了数百个运行时参数,可以对这些参数进行调优以提高性能。理想的参数设置不仅取决于目标多处理器体系结构,还取决于应用、问题和通信器的大小。本文介绍了一种自动性能调优工具ATune,它使用机器学习技术来确定Open MPI运行时参数子集的特定于程序的最佳设置。ATune通过训练阶段学习目标系统的行为,在训练阶段,针对不同的问题和通信器大小,在目标体系结构上运行几个MPI基准和MPI应用程序。对于新的输入程序,只需要运行一次,就可以让tune提供最佳运行时参数值的预测。基于NAS并行基准测试在SMP机器集群上进行的实验证明了ATune的有效性。对于这些实验,ATune导出的MPI运行时参数设置平均在目标系统上可实现的最大性能的4%以内,相对于默认参数设置,性能增益高达18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic tuning of MPI runtime parameter settings by using machine learning
MPI implementations provide several hundred runtime parameters that can be tuned for performance improvement. The ideal parameter setting does not only depend on the target multiprocessor architecture but also on the application, its problem and communicator size. This paper presents ATune, an automatic performance tuning tool that uses machine learning techniques to determine the program-specific optimal settings for a subset of the Open MPI's runtime parameters. ATune learns the behaviour of a target system by means of a training phase where several MPI benchmarks and MPI applications are run on a target architecture for varying problem and communicator sizes. For new input programs, only one run is required in order for ATune to deliver a prediction of the optimal runtime parameters values. Experiments based on the NAS Parallel Benchmarks performed on a cluster of SMP machines are shown that demonstrate the effectiveness of ATune. For these experiments, ATune derives MPI runtime parameter settings that are on average within 4% of the maximum performance achievable on the target system resulting in a performance gain of up to 18% with respect to the default parameter setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信