反馈对社交媒体药品消费信息披露的影响

Hitkul Jangra, Rajiv Shah, P. Kumaraguru
{"title":"反馈对社交媒体药品消费信息披露的影响","authors":"Hitkul Jangra, Rajiv Shah, P. Kumaraguru","doi":"10.1609/icwsm.v17i1.22158","DOIUrl":null,"url":null,"abstract":"Deaths due to drug overdose in the US have doubled in the last decade. Drug-related content on social media has also exploded in the same time frame. The pseudo-anonymous nature of social media platforms enables users to discourse about taboo and sometimes illegal topics like drug consumption. User-generated content (UGC) about drugs on social media can be used as an online proxy to detect offline drug consumption. UGC also gets exposed to the praise and criticism of the community. Law of effect proposes that positive reinforcement on an experience can incentivize the users to engage in the experience repeatedly. Therefore, we hypothesize that positive community feedback on a user's online drug consumption disclosure will increase the probability of the user doing an online drug consumption disclosure post again. To this end, we collect data from 10 drug-related subreddits. First, we build a deep learning model to classify UGC as indicative of drug consumption offline or not, and analyze the extent of such activities. Further, we use matching-based causal inference techniques to unravel community feedback's effect on users' future drug consumption behavior. We discover that 84% of posts and 55% comments on drug-related subreddits indicate real-life drug consumption. Users who get positive feedback generate up to two times more drugs consumption content in the future. Finally, we conducted an anonymous user study on drug-related subreddits to compare members' opinions with our experimental findings and show that user tends to underestimate the effect community peers can have on their decision to interact with drugs.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Feedback on Drug Consumption Disclosures on Social Media\",\"authors\":\"Hitkul Jangra, Rajiv Shah, P. Kumaraguru\",\"doi\":\"10.1609/icwsm.v17i1.22158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deaths due to drug overdose in the US have doubled in the last decade. Drug-related content on social media has also exploded in the same time frame. The pseudo-anonymous nature of social media platforms enables users to discourse about taboo and sometimes illegal topics like drug consumption. User-generated content (UGC) about drugs on social media can be used as an online proxy to detect offline drug consumption. UGC also gets exposed to the praise and criticism of the community. Law of effect proposes that positive reinforcement on an experience can incentivize the users to engage in the experience repeatedly. Therefore, we hypothesize that positive community feedback on a user's online drug consumption disclosure will increase the probability of the user doing an online drug consumption disclosure post again. To this end, we collect data from 10 drug-related subreddits. First, we build a deep learning model to classify UGC as indicative of drug consumption offline or not, and analyze the extent of such activities. Further, we use matching-based causal inference techniques to unravel community feedback's effect on users' future drug consumption behavior. We discover that 84% of posts and 55% comments on drug-related subreddits indicate real-life drug consumption. Users who get positive feedback generate up to two times more drugs consumption content in the future. Finally, we conducted an anonymous user study on drug-related subreddits to compare members' opinions with our experimental findings and show that user tends to underestimate the effect community peers can have on their decision to interact with drugs.\",\"PeriodicalId\":175641,\"journal\":{\"name\":\"International Conference on Web and Social Media\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v17i1.22158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,美国因药物过量而死亡的人数翻了一番。社交媒体上与毒品有关的内容也在同一时间爆炸式增长。社交媒体平台的伪匿名特性使用户能够谈论禁忌话题,有时甚至是毒品消费等非法话题。社交媒体上关于毒品的用户生成内容(UGC)可以作为检测线下毒品消费的在线代理。UGC也会受到社区的赞扬和批评。效果法则认为,对体验的积极强化可以激励用户重复体验。因此,我们假设社区对用户在线药物消费披露的积极反馈会增加用户再次发布在线药物消费披露帖子的概率。为此,我们从10个与毒品相关的子reddit上收集数据。首先,我们建立了一个深度学习模型,将UGC分类为线下和非线下的药物消费指标,并分析此类活动的程度。此外,我们使用基于匹配的因果推理技术来揭示社区反馈对用户未来吸毒行为的影响。我们发现84%的帖子和55%的评论在与毒品相关的子reddit上表明现实生活中的毒品消费。获得积极反馈的用户在未来的毒品消费内容会增加两倍。最后,我们在与毒品相关的子reddit上进行了一项匿名用户研究,将成员的意见与我们的实验结果进行比较,并表明用户倾向于低估社区同伴对他们决定与毒品互动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Feedback on Drug Consumption Disclosures on Social Media
Deaths due to drug overdose in the US have doubled in the last decade. Drug-related content on social media has also exploded in the same time frame. The pseudo-anonymous nature of social media platforms enables users to discourse about taboo and sometimes illegal topics like drug consumption. User-generated content (UGC) about drugs on social media can be used as an online proxy to detect offline drug consumption. UGC also gets exposed to the praise and criticism of the community. Law of effect proposes that positive reinforcement on an experience can incentivize the users to engage in the experience repeatedly. Therefore, we hypothesize that positive community feedback on a user's online drug consumption disclosure will increase the probability of the user doing an online drug consumption disclosure post again. To this end, we collect data from 10 drug-related subreddits. First, we build a deep learning model to classify UGC as indicative of drug consumption offline or not, and analyze the extent of such activities. Further, we use matching-based causal inference techniques to unravel community feedback's effect on users' future drug consumption behavior. We discover that 84% of posts and 55% comments on drug-related subreddits indicate real-life drug consumption. Users who get positive feedback generate up to two times more drugs consumption content in the future. Finally, we conducted an anonymous user study on drug-related subreddits to compare members' opinions with our experimental findings and show that user tends to underestimate the effect community peers can have on their decision to interact with drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信