在线学习与通用模型和预测类

J. Poland
{"title":"在线学习与通用模型和预测类","authors":"J. Poland","doi":"10.1109/ITW.2006.1633819","DOIUrl":null,"url":null,"abstract":"We review and relate some classical and recent results from the theory of online learning based on discrete classes of models or predictors. Among these frameworks, Bayesian methods, MDL, and prediction (or action) with expert advice are studied. We will discuss ways to work with universal base classes corresponding to sets of all programs on some fixed universal Turing machine, resulting in universal induction schemes.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online Learning with Universal Model and Predictor Classes\",\"authors\":\"J. Poland\",\"doi\":\"10.1109/ITW.2006.1633819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review and relate some classical and recent results from the theory of online learning based on discrete classes of models or predictors. Among these frameworks, Bayesian methods, MDL, and prediction (or action) with expert advice are studied. We will discuss ways to work with universal base classes corresponding to sets of all programs on some fixed universal Turing machine, resulting in universal induction schemes.\",\"PeriodicalId\":293144,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2006.1633819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们回顾并关联了基于离散类模型或预测器的在线学习理论的一些经典和最新结果。在这些框架中,研究了贝叶斯方法、MDL和专家建议的预测(或行动)。我们将讨论如何处理一些固定的通用图灵机上所有程序的集合所对应的通用基类,从而得到通用归纳方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Learning with Universal Model and Predictor Classes
We review and relate some classical and recent results from the theory of online learning based on discrete classes of models or predictors. Among these frameworks, Bayesian methods, MDL, and prediction (or action) with expert advice are studied. We will discuss ways to work with universal base classes corresponding to sets of all programs on some fixed universal Turing machine, resulting in universal induction schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信