{"title":"基于视觉和上下文注意模型的体育视频注意力排序","authors":"H. Shih, Chung-Lin Huang, Jenq-Neng Hwang","doi":"10.1109/MMSP.2007.4412904","DOIUrl":null,"url":null,"abstract":"In this paper, we propose new video attention modeling and content-driven mining strategies which enable client users to browse the video according to their preference. By integrating the object-based visual attention model (V'AM) with the contextual attention model (CAM), the proposed scheme not only can more reliably take advantage of the human perceptual characteristics but also effectively discriminate which video contents may attract users' attention. In addition, extended from the Google PageRank algorithm which sorts the websites based on the importance, we introduce the so-call content-based attention rank (AR) to effectively measure the user interest (UI) level of each video frame. The information of users' feedback is treated as the enhanced query data to further improve the retrieving accuracy. The proposed algorithm is evaluated on commercial baseball game sequences and produces promising results.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Video Attention Ranking using Visual and Contextual Attention Model for Content-based Sports Videos Mining\",\"authors\":\"H. Shih, Chung-Lin Huang, Jenq-Neng Hwang\",\"doi\":\"10.1109/MMSP.2007.4412904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose new video attention modeling and content-driven mining strategies which enable client users to browse the video according to their preference. By integrating the object-based visual attention model (V'AM) with the contextual attention model (CAM), the proposed scheme not only can more reliably take advantage of the human perceptual characteristics but also effectively discriminate which video contents may attract users' attention. In addition, extended from the Google PageRank algorithm which sorts the websites based on the importance, we introduce the so-call content-based attention rank (AR) to effectively measure the user interest (UI) level of each video frame. The information of users' feedback is treated as the enhanced query data to further improve the retrieving accuracy. The proposed algorithm is evaluated on commercial baseball game sequences and produces promising results.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video Attention Ranking using Visual and Contextual Attention Model for Content-based Sports Videos Mining
In this paper, we propose new video attention modeling and content-driven mining strategies which enable client users to browse the video according to their preference. By integrating the object-based visual attention model (V'AM) with the contextual attention model (CAM), the proposed scheme not only can more reliably take advantage of the human perceptual characteristics but also effectively discriminate which video contents may attract users' attention. In addition, extended from the Google PageRank algorithm which sorts the websites based on the importance, we introduce the so-call content-based attention rank (AR) to effectively measure the user interest (UI) level of each video frame. The information of users' feedback is treated as the enhanced query data to further improve the retrieving accuracy. The proposed algorithm is evaluated on commercial baseball game sequences and produces promising results.