两Pareto分布重叠系数的广义推断

Sibil Jose, Seemon Thomas
{"title":"两Pareto分布重叠系数的广义推断","authors":"Sibil Jose, Seemon Thomas","doi":"10.12785/ijcts/050205","DOIUrl":null,"url":null,"abstract":"This paper introduces a new method, called GPQ method, for the computation of overlapping coefficient of two Pareto distributions. Expected lengths and coverage probabilities of the confidence intervals are also calculated using the generalized pivotal quantity. The comparison of the method is done with the best available method, that is, bootstrap percentile method. The general performance of the proposed method is better than the existing methods. An illustrative example is also presented.","PeriodicalId":373764,"journal":{"name":"International Journal of Computational and Theoretical Statistics","volume":"125 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Inference for the Overlapping Coefficientof two Pareto Distributions\",\"authors\":\"Sibil Jose, Seemon Thomas\",\"doi\":\"10.12785/ijcts/050205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new method, called GPQ method, for the computation of overlapping coefficient of two Pareto distributions. Expected lengths and coverage probabilities of the confidence intervals are also calculated using the generalized pivotal quantity. The comparison of the method is done with the best available method, that is, bootstrap percentile method. The general performance of the proposed method is better than the existing methods. An illustrative example is also presented.\",\"PeriodicalId\":373764,\"journal\":{\"name\":\"International Journal of Computational and Theoretical Statistics\",\"volume\":\"125 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational and Theoretical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12785/ijcts/050205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational and Theoretical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12785/ijcts/050205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种计算两个Pareto分布重叠系数的新方法GPQ法。利用广义枢纽量计算了置信区间的期望长度和覆盖概率。并与现有的最佳方法,即自举百分位法进行了比较。该方法的总体性能优于现有方法。最后给出了一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Inference for the Overlapping Coefficientof two Pareto Distributions
This paper introduces a new method, called GPQ method, for the computation of overlapping coefficient of two Pareto distributions. Expected lengths and coverage probabilities of the confidence intervals are also calculated using the generalized pivotal quantity. The comparison of the method is done with the best available method, that is, bootstrap percentile method. The general performance of the proposed method is better than the existing methods. An illustrative example is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信