基于算子公式的并行FPGA路由

Yehdhih Ould Mohammed Moctar, P. Brisk
{"title":"基于算子公式的并行FPGA路由","authors":"Yehdhih Ould Mohammed Moctar, P. Brisk","doi":"10.1145/2593069.2593177","DOIUrl":null,"url":null,"abstract":"We have implemented an FPGA routing algorithm on a shared memory multi-processor using the Galois API, which offers speculative parallelism in software. The router is a parallel implementation of PathFinder, which is the basis for most commercial FPGA routers. We parallelize the maze expansion step for each net, while routing nets sequentially to limit the amount of rollback that would likely occur due to misspeculation. Our implementation relies on non-blocking priority queues, which use software transactional memory (SMT), to identify the best route for each net. Our experimental results demonstrate scalability for large benchmarks and that the amount of available parallelism depends primarily on the circuit size, not the inter-dependence of signals. We achieve an average speedup of approximately 3x compared to the most recently published work on parallel multi-threaded FPGA routing, and up to 6x in comparison to the single-threaded router implemented in the publicly available Versatile Place and Route (VPR) framework.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Parallel FPGA routing based on the operator formulation\",\"authors\":\"Yehdhih Ould Mohammed Moctar, P. Brisk\",\"doi\":\"10.1145/2593069.2593177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have implemented an FPGA routing algorithm on a shared memory multi-processor using the Galois API, which offers speculative parallelism in software. The router is a parallel implementation of PathFinder, which is the basis for most commercial FPGA routers. We parallelize the maze expansion step for each net, while routing nets sequentially to limit the amount of rollback that would likely occur due to misspeculation. Our implementation relies on non-blocking priority queues, which use software transactional memory (SMT), to identify the best route for each net. Our experimental results demonstrate scalability for large benchmarks and that the amount of available parallelism depends primarily on the circuit size, not the inter-dependence of signals. We achieve an average speedup of approximately 3x compared to the most recently published work on parallel multi-threaded FPGA routing, and up to 6x in comparison to the single-threaded router implemented in the publicly available Versatile Place and Route (VPR) framework.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们使用Galois API在共享内存多处理器上实现了FPGA路由算法,该算法在软件中提供推测并行性。该路由器是PathFinder的并行实现,PathFinder是大多数商用FPGA路由器的基础。我们将每个网络的迷宫扩展步骤并行化,同时按顺序路由网络,以限制可能由于错误猜测而发生的回滚数量。我们的实现依赖于非阻塞优先级队列,它使用软件事务性内存(SMT)来确定每个网络的最佳路由。我们的实验结果证明了大型基准测试的可扩展性,并且可用并行性的数量主要取决于电路的大小,而不是信号的相互依赖性。与最近发布的并行多线程FPGA路由工作相比,我们实现了大约3倍的平均加速,与公开可用的多功能位置和路由(VPR)框架中实现的单线程路由器相比,我们实现了高达6倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel FPGA routing based on the operator formulation
We have implemented an FPGA routing algorithm on a shared memory multi-processor using the Galois API, which offers speculative parallelism in software. The router is a parallel implementation of PathFinder, which is the basis for most commercial FPGA routers. We parallelize the maze expansion step for each net, while routing nets sequentially to limit the amount of rollback that would likely occur due to misspeculation. Our implementation relies on non-blocking priority queues, which use software transactional memory (SMT), to identify the best route for each net. Our experimental results demonstrate scalability for large benchmarks and that the amount of available parallelism depends primarily on the circuit size, not the inter-dependence of signals. We achieve an average speedup of approximately 3x compared to the most recently published work on parallel multi-threaded FPGA routing, and up to 6x in comparison to the single-threaded router implemented in the publicly available Versatile Place and Route (VPR) framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信