放松提供空结果的子图查询

E. Vasilyeva, Maik Thiele, Adrian Mocan, Wolfgang Lehner
{"title":"放松提供空结果的子图查询","authors":"E. Vasilyeva, Maik Thiele, Adrian Mocan, Wolfgang Lehner","doi":"10.1145/2791347.2791382","DOIUrl":null,"url":null,"abstract":"Graph databases with the property graph model are used in multiple domains including social networks, biology, and data integration. They provide schema-flexible storage for data of a different degree of a structure and support complex, expressive queries such as subgraph isomorphism queries. The exibility and expressiveness of graph databases make it difficult for the users to express queries correctly and can lead to unexpected query results, e.g. empty results. Therefore, we propose a relaxation approach for subgraph isomorphism queries that is able to automatically rewrite a graph query, such that the rewritten query is similar to the original query and returns a non-empty result set. In detail, we present relaxation operations applicable to a query, cardinality estimation heuristics, and strategies for prioritizing graph query elements to be relaxed. To determine the similarity between the original query and its relaxed variants, we propose a novel cardinality-based graph edit distance. The feasibility of our approach is shown by using real-world queries from the DBpedia query log.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Relaxation of subgraph queries delivering empty results\",\"authors\":\"E. Vasilyeva, Maik Thiele, Adrian Mocan, Wolfgang Lehner\",\"doi\":\"10.1145/2791347.2791382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph databases with the property graph model are used in multiple domains including social networks, biology, and data integration. They provide schema-flexible storage for data of a different degree of a structure and support complex, expressive queries such as subgraph isomorphism queries. The exibility and expressiveness of graph databases make it difficult for the users to express queries correctly and can lead to unexpected query results, e.g. empty results. Therefore, we propose a relaxation approach for subgraph isomorphism queries that is able to automatically rewrite a graph query, such that the rewritten query is similar to the original query and returns a non-empty result set. In detail, we present relaxation operations applicable to a query, cardinality estimation heuristics, and strategies for prioritizing graph query elements to be relaxed. To determine the similarity between the original query and its relaxed variants, we propose a novel cardinality-based graph edit distance. The feasibility of our approach is shown by using real-world queries from the DBpedia query log.\",\"PeriodicalId\":225179,\"journal\":{\"name\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2791347.2791382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

具有属性图模型的图数据库用于多个领域,包括社交网络、生物学和数据集成。它们为不同结构程度的数据提供灵活的模式存储,并支持复杂的表达性查询,如子图同构查询。图数据库的灵活性和表达性使得用户很难正确表达查询,并可能导致意想不到的查询结果,例如空结果。因此,我们提出了一种子图同构查询的松弛方法,该方法能够自动重写图查询,使重写的查询与原始查询相似,并返回一个非空的结果集。详细地,我们提出了适用于查询的松弛操作,基数估计启发式,以及对要放松的图查询元素进行优先级排序的策略。为了确定原始查询与其松弛变体之间的相似性,我们提出了一种新的基于基数的图编辑距离。通过使用来自DBpedia查询日志的实际查询,可以证明我们方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relaxation of subgraph queries delivering empty results
Graph databases with the property graph model are used in multiple domains including social networks, biology, and data integration. They provide schema-flexible storage for data of a different degree of a structure and support complex, expressive queries such as subgraph isomorphism queries. The exibility and expressiveness of graph databases make it difficult for the users to express queries correctly and can lead to unexpected query results, e.g. empty results. Therefore, we propose a relaxation approach for subgraph isomorphism queries that is able to automatically rewrite a graph query, such that the rewritten query is similar to the original query and returns a non-empty result set. In detail, we present relaxation operations applicable to a query, cardinality estimation heuristics, and strategies for prioritizing graph query elements to be relaxed. To determine the similarity between the original query and its relaxed variants, we propose a novel cardinality-based graph edit distance. The feasibility of our approach is shown by using real-world queries from the DBpedia query log.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信