嵌套周期字典下周期信号的稀疏恢复保证

Pouria Saidi, George K. Atia
{"title":"嵌套周期字典下周期信号的稀疏恢复保证","authors":"Pouria Saidi, George K. Atia","doi":"10.1109/ITW48936.2021.9611507","DOIUrl":null,"url":null,"abstract":"Periodic signals admit sparse representations in nested periodic dictionaries (NPDs). While sparse recovery algorithms rooted in the theory of compressive sensing can successfully recover their underlying periods, existing recovery conditions derived for random dictionaries are of limited use in this context as they fail to explain the achievability results of said algorithms. In addition, provable achievability guarantees specific to NPDs have been heretofore lacking. In this paper, we derive exact recovery conditions for sparse periodic signals by leveraging prior information about the structure of NPDs. As instances of such dictionaries, we investigate the achievability conditions for the Farey and the Ramanujan Periodicity Transform dictionaries. Our numerical results demonstrate that the newly derived conditions can provide guarantees for exact recovery with the Farey dictionary, and in turn for exact period estimation, for large enough data lengths.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse Recovery Guarantees of Periodic Signals with Nested Periodic Dictionaries\",\"authors\":\"Pouria Saidi, George K. Atia\",\"doi\":\"10.1109/ITW48936.2021.9611507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic signals admit sparse representations in nested periodic dictionaries (NPDs). While sparse recovery algorithms rooted in the theory of compressive sensing can successfully recover their underlying periods, existing recovery conditions derived for random dictionaries are of limited use in this context as they fail to explain the achievability results of said algorithms. In addition, provable achievability guarantees specific to NPDs have been heretofore lacking. In this paper, we derive exact recovery conditions for sparse periodic signals by leveraging prior information about the structure of NPDs. As instances of such dictionaries, we investigate the achievability conditions for the Farey and the Ramanujan Periodicity Transform dictionaries. Our numerical results demonstrate that the newly derived conditions can provide guarantees for exact recovery with the Farey dictionary, and in turn for exact period estimation, for large enough data lengths.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

周期信号在嵌套周期字典(npd)中允许稀疏表示。虽然基于压缩感知理论的稀疏恢复算法可以成功地恢复其底层周期,但现有的随机字典恢复条件在这种情况下的用途有限,因为它们无法解释所述算法的可实现性结果。此外,迄今为止还缺乏针对国家不发达国家的可证明的可实现性保证。本文利用npd结构的先验信息,导出了稀疏周期信号的精确恢复条件。作为这类字典的实例,我们研究了Farey和Ramanujan周期变换字典的可实现条件。我们的数值结果表明,新导出的条件可以保证在足够大的数据长度下使用Farey字典精确恢复,进而保证精确的周期估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Recovery Guarantees of Periodic Signals with Nested Periodic Dictionaries
Periodic signals admit sparse representations in nested periodic dictionaries (NPDs). While sparse recovery algorithms rooted in the theory of compressive sensing can successfully recover their underlying periods, existing recovery conditions derived for random dictionaries are of limited use in this context as they fail to explain the achievability results of said algorithms. In addition, provable achievability guarantees specific to NPDs have been heretofore lacking. In this paper, we derive exact recovery conditions for sparse periodic signals by leveraging prior information about the structure of NPDs. As instances of such dictionaries, we investigate the achievability conditions for the Farey and the Ramanujan Periodicity Transform dictionaries. Our numerical results demonstrate that the newly derived conditions can provide guarantees for exact recovery with the Farey dictionary, and in turn for exact period estimation, for large enough data lengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信